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ABSTRACT

As metamaterials are coming closer and closer to becom-
ing a mature industrial solution, the question of manufac-
turing has started to gain importance. Indeed, variability
related to industrial processes can cause geometric vari-
ability which might degrade the attenuation performance
of manufactured samples. Hence, there is a strong need to
quantify the impact of uncertainty on the behavior of vi-
broacoustic metamaterials. However, full-scale metama-
terial models can require a relatively high computational
time to solve. This makes uncertainty quantification meth-
ods like Monte-Carlo simulations either computationally
intensive or infeasible due to the high number of model
solves required. Hence, this paper proposes a parametric
reduced-order model based on the Krylov subspace to pre-
dict the vibroacoustic response of a metamaterial structure
due to geometric changes without requiring another solve
of the full system. Derivation of the response statistics is
then achieved by applying a Monte-Carlo simulation on
the obtained reduced-order model.
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1. INTRODUCTION

When it comes to lightweight solutions for sound and vi-
bration attenuation, metamaterials are showing more and
more potential for noise and vibration harnessing in dif-
ferent areas of the industry [1,2]. The locally resonant
nature of metamaterials allows them to create stopbands
in which the vibration response is attenuated. However,
the problem of variability in metamaterials and the pre-
diction of its effects on their performance is currently a
topic of interest. As metamaterials often rely on either in
tune resonators or periodicity, imperfect manufacturing of
metamaterial structures could lead to underperforming so-
lutions. This is why, the impact of such uncertainty needs
to be assessed.

Currently, few design procedures for metamaterials
take into account the impact of uncertainties. At present,
metamaterials are typically designed by Unit-Cell (UC)
modeling [3]. This method takes advantage of the meta-
material translational symmetry to reduce the size of the
problem, as only the smallest repeating period of the ma-
terial is modeled. Some authors used this method to char-
acterize the impact of uncertainty at the UC level [4, 5].
However, as this representation assumes perfect periodic-
ity of the material between the UCs, it is not able to de-
scribe the random imperfections that occur when the ma-
terial is actually manufactured. Still, to take into account
these imperfections, different approaches were already
proposed in current literature. Some authors suggest to
take into account the impact of variability in a finite meta-
material model. Some references [6, 7] present studies of
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metamaterial structures through uncertainty quantification
techniques such as Gaussian process modeling to charac-
terize e.g. the uncertainty bounds on its response met-
rics. In [8], a model-order reduction strategy is presented
to improve the solving time of nearly periodic structure,
based on periodic structure theory, which allows to par-
tially overcome the computational limitations of statistical
analysis for large metamaterial structures.

However, the study of uncertainty in metamaterials
has been mostly limited to point scatterers or idealized res-
onators [9], and the study of geometric deviations in such
structures has received less attention. Indeed, geometric
perturbations of a structure leads to nonlinear changes in
the finite element matrices, making model-order reduction
more complex. Additionally, parametric model-order re-
duction schemes need to be developed for efficient sam-
pling and uncertainty quantification of the system as the
number of solves needed for convergence of the statistics
under consideration might be high in some cases.

In this paper, a parametric model-order reduction
scheme based on [9] is developed for finite-size metama-
terials. The method is applied to a phononic crystal beam
to obtain the statistics of its vibration response to a point
excitation. The accuracy of the method is assessed by
comparison with the full-order model for individual simu-
lations, but also for the statistics of the system’s response.

The rest of the paper is structured as follows: section
2 provides a description of the problem under considera-
tion. Then, section 3 gives an overview of the parametric
model-order reduction approach. A statistical analysis of
the structure as well as a comparison with the full-order
model are given in section 4. An extension of the pro-
posed method by projection basis enrichment is proposed
in 5. Finally, the results are summarized in section 6.

2. PROBLEM DEFINITION

In this paper, the phononic Euler-Bernoulli beam of [10]
is considered as case study. A one-dimensional structure
is considered, for which geometric changes are straight-
forwardly defined and have a direct effect on the stopband
behavior of the metamaterial. The system also has the ad-
vantage of being practically manufacturable, allowing for
possible experimental validation of the numerical study in
future work.

The beam is composed of 9 UCs with subsequent
thickness variations (Fig. 1). The UC has a length Lo =
40 mm and is composed of two equal-sized parts with dif-
ferent heights h; = 10 mm and he = 3 mm respectively.

The material properties of the beam are described in table
Tab. 1. Free-free boundary conditions are considered and
a unit transverse point force is applied on the first node on
the left side of the beam.

Table 1. Properties of the phononic beam.

Property Symbol | Value
Width b 10 mm
Mass density P 1135 kg /m?
Young’s modulus E 1.9 GPa
Structural damping | 7 5%

Due to the presence of variability, the position of each
UC center is assumed to randomly deviate from its nom-
inal value and is described by the parameters [,,. This
choice is motivated by the fact that this phononic beam
relies on periodicity to produce a stopband. Therefore,
modifying [,, directly impacts the periodicity but also pre-
serves its total length as well as the location of the forcing
and response nodes. The length deviation of /,, is assumed
to follow a uniform distribution with limits at 3% of the
nominal length. There is currently no justification for this
choice as data in the metamaterial literature on such varia-
tion is rather limited. However, the statistical distribution
of the [,, could be determined by production of a large
enough series and statistical analysis of the dimensions of
the system.

To conduct the numerical study, the beam is dis-
cretized using the Finite Element Method (FEM). Euler-
Bernoulli beam elements are used to obtain a small,
one-dimensional problem instead of a full elastodynamic
model. 8 elements per UC are used, ensuring a minimum
of 10 elements per wavelength in either of the sections of
the beam. The FE-discretized, [,,-dependent equations of
motion then write as

D(l,)u(l,) =F, (1)

where D(l,,) is the dynamic stiffness matrix, u(l,,) is
the displacement vector and F is the force vector. The de-
pendency with respect to the [,, is accounted for by mov-
ing the nodes of the structure in space such that the el-
ements of the beam are either contracted or dilated by a
small percentage compared to the case [,, = 0 to match the
desired geometric variation. In general, metamaterial UCs
can become quite intricate, and UC meshes rather large,
making full structure models of the UC assembly even
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Figure 1. Phononic beam structure under consideration. F’ represents the forcing point, while H represent the

velocity response point.

larger. Solving equation Eqn. (1) might then be too com-
putationally expensive for full-order uncertainty propa-
gation simulations requiring high amount of samples as
the computational cost for one solve is already high. In
the following section, a parametric model-order reduction
scheme is developed to take into account the impact of ge-
ometrical uncertainties. The model under consideration is
rather small and does not need to be reduced to perform
uncertainty quantification. In principle, the method pro-
posed is however generally valid, and in this paper it will
be applied to this simple case as a first validation. The
goal of the method is to obtain a parametric reduced-order
model to quickly evaluate the response of a structure sub-
ject to geometric variations.

3. METHODOLOGY
3.1 Parametric Model-Order Reduction Scheme

As a first approach, one might consider expanding u as a
first order perturbation series around uy:

NP
u>~uy+ Z lnu(ln), 2)
n=1
with N, the number of random parameters, equal to
the number of UCs in this study, up = u(l,, = 0) and
ugn) = D’l(O)%hn:OF. The matrices 372 can be
straightforwardly evaluated using the analytical expres-
sion of the Euler-Bernouilli beam element matrices

12 6, —12 6l
EI, | 6l 41> —6l. 202
P — p e e e e
K= -12 a1, 12 —a.|]" @
6l, 22 —6l, 4l?
156 221, 54  —13l,
o PSple | 220 42 13l 312
Me = 420 54 131, 156 —22l, |’ @
—13l, —3l, —22l, 417
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where K? and MP are respectively the Euler-
Bernoulli beam element stiffness and mass matrices of the
p-th cross section of the beam with p = 1,2, S, and I,
are the surface and quadratic moment of inertia of the p-th
cross section of the beam and [, is the element length.

Eqn. (2) usually suffers from accuracy and instabil-
ity, especially in the presence of resonances, making it
unsuitable for accurate computation of the frequency re-
sponse of a vibrating structure in which many resonances
are present [11].

This is why an alternative moment-matching ap-
proach [9, 12] is used instead in this paper. The moments
of the first-order perturbation series uy and u§”> are mul-
tiplied by a set of coefficients for the chosen set of pa-
rameters by multiplying them by a correction contribution
amplitude w,,.

NP
u >~ woug + E Wyl,u

n=1

(n)
1

®)

These additional degrees of freedom will later allow
for an optimal correction of the displacement vector. This
is equivalent to taking the assumption that the solution u
lies in the subspace

Projecting Eqn. (1) onto the basis Q, the following
reduced-order problem is obtained

(1)

(Np)
ug,uy , .. P

Q = orth ([ L (6)

D(ln)w(ln) =F, (N

with D(l,,) = Q*D(1,,)Q, and F = Q*F. Eqn. (7)
can then be used to quickly evaluate the changes of u to
parametric variations, without the need to solve for the
full-order problem once again, and only requiring a re-
assembly of the system matrices with a transformed mesh
according to the /,,.
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3.2 Monte-Carlo simulations

To quantify the random changes in the structure’s re-
sponse, Monte-Carlo simulations are used to propagate
the uncertainty. For a sufficiently large number of
samples Nggmpies, the set of I, is drawn from a uni-
form distribution using a random number generator. In
this study, the Python function from the Numpy library
numpy . random.uniform is used.

For each set of [,,, and at each frequency the matrix
D(l,,) is assembled. Then the system Eqn. (7) is derived
and solved. Equation Eqn. (5) is finally used to obtain the
displacement vector and the response. Once the procedure
is repeated for the full set of [,,, statistical analysis can be
run on the obtained set of responses.

In the following section, the previously derived reduc-
tion scheme and the Monte-Carlo simulation approach are
used for statistical analysis of the phononic beam struc-
ture.

4. STATISTICAL ANALYSIS OF THE PHONONIC
BEAM

In this section, the method of section 3 is validated on the
structure from section 2. Then an error analysis is per-
formed to verify the accuracy of the method.

4.1 Response analysis

In (Fig. 2), the endpoint velocity response of the beam
is displayed in dashed lines for the nominal case, where
I, = 0. The nominal periodic phononic beam shows a fre-
quency range of strong vibration reduction around 1050
Hz. As shown in [10], this is due to the presence of a
Bragg stopband around this frequency. Destructive inter-
ference occurs, which prevents waves from propagating to
the probing location at the other side of the beam. As this
effect is linked to the periodicity of the structure, including
disorder in the UC geometry through the /,,, and therefore
breaking the periodicity of the systems is expected to have
an impact on the stopband effect.

The median of the response (blue) as well as the con-
fidence interval between its 5-th and the 95-th percentiles
(light blue region) are also displayed. A total of 1000
Monte-Carlo sample are computed using the reduced-
order model from Eqn. (7) method and used to obtain
the statistics of the response. After 1000 samples, it was
observed that the relative variation in the statistical indi-
cators under consideration is less than 3% over the fre-
quency range 50 — 2500 Hz when increasing the number

2350

of iterations.
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Figure 2. Endpoint velocity response of the
phononic response in the nominal case, median, 5-
th and the 95-th percentiles of the response.

Thanks to these response statistics, the effect of geo-
metric variations on the vibration attenuation performance
of the beam can be assessed. In the higher frequency part
of the stopband region, as well as above it, the differ-
ence between the 95-th and 5-th percentile responses is
seen to be bigger than in the lower part of the frequency
range, meaning that the magnitude of the response is more
uncertain in this frequency region. For the geometrical
changes considered, small variations affect the response
in the band gap. However, a clear attenuation region still
persists for the disorder strength considered. This was also
observed for locally resonant disordered beam metamate-
rial structures in the literature [6, 13, 14].

4.2 Error Analysis

Following computation of the response statistics, an anal-
ysis is conducted to compare how representative the
reduced-order model is of the full-order model. After per-
forming statistical computations with the reduced-order
model, a Monte-Carlo simulation is run for the full-order
model Eqn. (1) for the same set of [,, to conduct an er-
ror analysis. This is feasible since the model considered
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here has a small number of degrees of freedom. To verify
the accuracy of the reduced-order model, the maximum
of the relative error between the reduced and full-order
models across all realizations of the structure is evaluated.
This error metric can serve as an estimate of the minimum
degree of accuracy attained by the method in the desired
frequency range.

107!

Max RMSE

1072

T T T T
500 1000 1500 2000 2500
Freq [Hz]

Figure 3. Maximum relative root mean square error
between the reduced and full-order models observed
across realizations of the system.

The results of this first analysis are displayed in
Fig. 3. From the error curve across the frequency range,
we can observe that the reduced-order model performs
best up to 1000Hz, before the stopband region, with under
5% relative error. At higher this frequencies, the maxi-
mum error between the two models is higher, and can get
as high as 40% near some resonances. Indeed, past the
stopband, the dynamics of the phononic beam are differ-
ent and could explain the difference in accuracy. Addi-
tionally, error peaks occur near resonances of the system.

To verify the accuracy of the method, the error on the
statistical indicators is computed for this system, namely,
the median, 5th and 95th percentiles of the response is
computed compared to the full-order system in (Fig. 4).

The error does not exceed 15% for either of the statis-
tical quantities over the frequency range of interest. How-

Mediane RMSE
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&
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Figure 4. Relative root mean square error between
the reduced and full-order models on the median, 5-
th and 95-th percentiles of the endpoint velocity re-
sponse.

ever, similarly to (Fig. 3), a much lower accuracy is ob-
tained above the stopband region and error peaks are again
notified near resonances of the system, confirming the in-
accuracy problem notified earlier. The relative error on
the statistics is seen to be much lower than the maximum
error across realizations of the system. This is to be ex-
pected since the first error metric serves as a measure of
the maximal error and single realizations of the system
will have an error profile either lower or equal to the one
of (Fig. 3).

If the desired accuracy of the reduced-order model is
not acceptable for certain use cases. The origin for the
error between the two models is that the subspace () is not
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of sufficient rank to describe effect of geometric variations
with sufficient accuracy, especially in the regions of high
error. A higher accuracy could be attained by enriching
the projection basis with higher order moments of u and
is the object of the following section.

5. SECOND ORDER PROJECTION SCHEME

To obtain additional accuracy, one may consider adding
the second order terms of the perturbation series to the
reduced-order basis. The subspace Q then becomes,

Q2 = orth ([Q, ugl’l), uél’Q), - uéN"’N’))D , (8
where the ugm’") are defined as
2
2 ©0) { Ot Al ],y ©)

The procedure from section 3 is then followed using
Qo instead of Q. Monte-Carlo simulations are run on
this enriched reduced-order model. The maximum error
across realizations of the system is computed again and
displayed in Fig. 5.

An increase of accuracy of about one to two orders of
magnitude is observed compared to Fig. 3 for the whole
frequency range. Error peaks are still observed but their
magnitude is lower. However, this gain of accuracy comes
at the cost of a higher need in computational resources as
the size of the reduced-order model might increase signif-
icantly from 1 4+ N, to 1 + N, + N at most due to the
number of correction vectors to be computed increasing.

6. CONCLUSION

In this paper, a parametric model-order reduction scheme
was derived to analyze the effect of random geometric
variations on the behavior of a phononic crystal beam.
A comparison of the reduced-order model with the full-
order model response and statistics was performed, veri-
fying the accuracy of the method.

Statistical analysis of the structure was conducted
through Monte-Carlo simulation of the reduced-order
model. A statistical analysis of the metamaterial struc-
ture allowed for quantification of the effect of geometrical
variations stopband behavior of the structure. The atten-
uation performance of the structure was observed to be
impacted by the random length changes in some cases,

2352
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Figure 5. Maximum relative root mean square er-
ror between the reduced and second order full-order
models observed across realizations of the system.

meaning that some samples of the beam might under-
perform compared to its target performance, which was
observed in the literature for different structures. In this
situation, the vibration attenuation region stays relatively
close to the nominal case for the considered geometric
perturbations.

In the specific case study of this paper, the full and
reduced-order models take similar time to run. In the up-
coming works, larger structures will to be analyzed as the
computational cost reduction is expected and needs to be
quantified. The impact of the number basis of correction
vectors used in the model needs as well to be assessed in
terms of accuracy gain and computational cost increase
for a wider range metamaterial structures and problems,
as it is important to verify that the accuracy is sufficient
for the study under consideration. To do so in a different,
specific case study, the analysis from (Fig. 3), using only
a few realizations (say 10 to 50) of the system could serve
as a benchmark.

7. ACKNOWLEDGMENTS

The European Union is gratefully acknowledged for
their support of the METAVISION research project (GA

11™* Convention of the European Acoustics Association
Milaga, Spain * 23" — 26" June 2025 *

SOCIEDAD ESPAROLA
SEA DE ACUSTICA



FORUM ACUSTICUM
ails EURONOISE

101072415). Views and opinions expressed are however
those of the authors only and do not necessarily reflect
those of the European Union. The European Union cannot
be held responsible for them. The research of R. Boukadia
(fellowship no. 12E2823N) and L. Van Belle (fellowship
no. 1254325N) is funded by a grant from the Research
Foundation — Flanders (FWO). Internal Funds KU Leu-
ven are gratefully acknowledged for their support.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

8. REFERENCES

F. A. Pires, R. F. Boukadia, M. Wandel, C. Thomas,
E. Deckers, W. Desmet, and C. Claeys, “Novel res-
onator concept for improved performance of locally
resonant based metamaterials,” Thin-Walled Struc-
tures, vol. 209, 4 2025.

N. de Melo Filho, C. Claeys, E. Deckers, and
W. Desmet, “Realisation of a thermoformed vibro-
acoustic metamaterial for increased stl in acoustic

resonance driven environments,” Applied Acoustics,
vol. 156, pp. 78-82, 2019.

V. Cool, E. Deckers, L. Van Belle, and C. Claeys,
“A guide to numerical dispersion curve calculations:
Explanation, interpretation and basic matlab code,”
Mechanical Systems and Signal Processing, vol. 215,
p. 111393, 2024.

M. N. Ichchou, F. Bouchoucha, M. A. B. Souf,
O. Dessombz, and M. Haddar, “Stochastic wave finite
element for random periodic media through first-order
perturbation,” Computer Methods in Applied Mechan-
ics and Engineering, vol. 200, pp. 2805-2813, 10
2011.

J. Henneberg, J. S. G. Nieto, K. Sepahvand, A. Ger-
lach, H. Cebulla, and S. Marburg, “Periodically ar-
ranged acoustic metamaterial in industrial applica-
tions: The need for uncertainty quantification,” Ap-
plied Acoustics, vol. 157, 1 2020.

L. Van Belle, E. Deckers, and A. Cicirello, “Investi-
gating and exploiting the impact of variability in res-
onator parameters on the vibration attenuation in lo-
cally resonant metamaterials,” Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 382, 8 2024.

R. Santoro, M. Mazzeo, and G. Failla, “A computa-
tional framework for uncertain locally resonant meta-
material structures,” Mechanical Systems and Signal
Processing, vol. 190, p. 110094, 2023.

(8]

(9]

(10]

(11]

(12]

(13]

(14]

2353

J.-M. Mencik, “Improved model reduction with ba-
sis enrichment for dynamic analysis of nearly peri-
odic structures including substructures with geomet-
ric changes,” Journal of Computational and Applied
Mathematics, vol. 445, p. 115844, 8 2024.

R. F. Boukadia, Y. Pillot, E. Deckers, W. Desmet,
Y. Pillot, E. Deckers, and W. Desmet, “Quantifying
the impact of variability on locally resonant metama-

terial performance through reduced order modeling,”
2024-08-02.

B. Van Damme and A. Zemp, “Energy distribution
and exchange between spatial harmonics in bending
wave phononic crystals,” Physical Review Applied,
vol. 10, no. 1, p. 014001, 2018.

P. B. Nair and A. J. Keane, “Stochastic reduced ba-
sis methods,” AIAA journal, vol. 40, no. 8, pp. 1653—
1664, 2002.

P. Benner and L. Feng, “A robust algorithm for para-
metric model order reduction based on implicit mo-
ment matching,” Reduced order methods for modeling
and computational reduction, pp. 159-185, 2014.

A. T. Fabro, “University of southampton faculty of en-
gineering and the environment institute of sound and
vibration research propagation in waveguides with
slowly changing variability,” 2014.

A.T. Fabro, N. S. Ferguson, T. Jain, R. Halkyard, and
B. R. Mace, “Wave propagation in one-dimensional
waveguides with slowly varying random spatially cor-
related variability,” Journal of Sound and Vibration,
vol. 343, pp. 2048, 5 2015.

11™* Convention of the European Acoustics Association
Milaga, Spain * 23" — 26" June 2025 *

SOCIEDAD ESPAROLA
SEA DE ACUSTICA



