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ABSTRACT

Reinforcement learning (RL) offers a powerful approach
to automate decision-making in Computational Fluid Dy-
namic (CFD), improving accuracy and reducing human
effort, leading to more efficient solvers.

In this work, we expand our RL-based polynomial adap-
tation technique for high-order solvers [1, 2] to capture
acoustics. We improve aeroacoustic simulations employ-
ing RL to define a high-order acoustic path in the high-
order solver HORSES3D [3], allowing precise wave cap-
ture from source to observer. Offline training eliminates
the need for high-fidelity solutions, making the method
versatile across various meshes and PDEs. This approach
effectively addresses aeroacoustic challenges, focusing
computational efforts where needed and ensuring accurate
results at a reduced cost.

Keywords: reinforcement learning, high-order discon-
tinuous Galerkin, p-adaptation, adaptive mesh refine-
ment, acoustics

1. INTRODUCTION

The field of computational fluid dynamics (CFD) has un-
dergone a paradigm change through the integration of ma-
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chine learning techniques with classical numerical meth-
ods [4, 5]. In particular, reinforcement learning (RL) has
been adopted as a valuable tool for a variety of fields,
creating high-performing autonomous agents capable of
making real-time decisions in complex environments [6].
In fluid dynamics, RL has been widely used to enable
dynamic flow control [7–9], surpassing traditional ap-
proaches. Other applications in the field of numerical sim-
ulations for fluid dynamics include the selection of con-
stants in turbulence models [10, 11], optimal parameters
in high-order schemes [12, 13] or mesh adaptation.

Mesh adaptation or adaptive mesh refinement (AMR) al-
lows to refine or coarsen the computational mesh based
on sensors or metrics. Traditionally, this process has re-
lied on manual intervention, heuristics or error estima-
tors [14,15], which is time-consuming and limits the abil-
ity to capture complex flow phenomena. The integration
of RL for mesh adaptation offers a novel approach to auto-
mate the process, minimizing user intervention while pro-
viding a flexible and general framework applicable to a
wide range of problems. RL has been successfully used
for AMR (h-refinement) in recent works, where agents
were trained to refine or coarsen the mesh, increasing the
accuracy in critical regions and minimizing the computa-
tional cost [16]. Additionally, Yang et al. [17] consider
new policy architectures which are trained from numeri-
cal simulations and are agnostic to the mesh size. These
approaches provide accurate solutions and a reduced com-
putational cost, surpassing traditional mesh refinement ap-
proaches.

This work extends our research presented in [1, 2], where
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we established the basis for applying reinforcement learn-
ing to p-adaptation in complex 3D turbulent problems.
Furthermore, we provide an RL-based error estimator that
can be used to estimate the order of magnitud of spa-
tial errors inexpensively. Based on this original concept,
we have developed a novel methodology to apply this ap-
proach to acoustic simulations. Here, we define an acous-
tic path, from a source to an observer, where the task of
the p-adaptation algorithm is to accurately capture pres-
sure waves; while outside of the acoustic path, the mesh is
refined based on aerodynamic features. This hybrid adap-
tation strategy provides accurate solutions and results in
a reduction of the required computational cost when run-
ning numerical simulations for acoustics.

2. METHODOLOGY

The methodology is implemented in the open source
solver HORSES3D [3, 18, 19], developed at the ETSIAE-
UPM School of Aeronautics in Madrid, and avail-
able on Github (https://github.com/loganoz/
horses3d). This solver is a high-order discontinu-
ous Galerkin (DG) tool capable of simulating compress-
ible, incompressible, and multiphase flows with acoustics.
HORSES3D allows for the use of high order polynomials
in each element in the mesh, and shows exponential de-
cay of the error when increasing the polynomial order but
with only a linear increase in the cost, which results in
very efficient computations.

The p-adaptation strategy [2] allows one to select the
optimal polynomial order in each element of the mesh
independently. As the proposed approach is anisotropic,
three different polynomials are defined inside each ele-
ment of the mesh. This methodology provides an auto-
matic way of increasing the accuracy of the solver, by
refining the mesh in regions with strong gradients, while
keeping the computational cost down, as the polynomial
order is reduced in the far field or other regions of less
interest. The p-adaptation process is based on a set of
variables of interest (e.g., momentum or pressure) that the
user must provide. These variables will be used as a refer-
ence for the RL agent, resulting in an optimal adaptation
for these specific variables.
When applied to acoustics, it is possible to define an
acoustic path between a source and an observer. Within
this acoustic path, the RL agent applies a pressure-based
p-adaptation to accurately capture the acoustic waves; and
outside the path, it applies a momentum/velocity-based
adaptation to represent aerodynamic flow features. The
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Figure 1. Example of the distance calculation from
a high order Gauss node to the line that connects the
acoustic source and the observer.

acoustic path is defined along a straight line between the
source and the observer. Then, the minimum distance
from every high order Gauss node of the mesh to that
line is calculated as depicted in Figure 1. All elements
with at least one Gauss node whose distance d is below
a threshold dth, will be included inside the acoustic path.
The definition of dth is problem dependent and is an input
provided by the user. Finally, in a real problem both the
source and the observer could be defined as a surface (e.g.,
a boundary) instead of a single point. In this scenario, a
different line is created from each node of the source to
each node of the observer. Furthermore, since this step is
performed only once, at the beginning of the simulation,
the overhead in relation to the complete simulation time is
negligible.

3. RESULTS

To test the proposed p-adaptation methodology for acous-
tics and the acoustic path, we simulate different problems,
in increasing level of complexity. As the RL-based p-
adaptation agent is agnostic to the computation mesh and
the PDE being solved, only one agent is trained, which is
used for every problem without modifications.

3.1 Monopole

First, to test the performance of the pressure-based
p-adaptation against a momentum-based, a simple
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monopole is simulated using the nonlinear Euler Equa-
tions (EE). The mesh is a square with 400×400 elements.
In this test case, the acoustic path is not considered; in-
stead, the polynomial order will be adapted by the RL
agent in the whole mesh. A snapshot of the pressure field,
once quasi-steady state conditions are achieved, is repre-
sented in Figure 2.
Additionally, to validate the proposed methodology,
three simulations have been performed, with different p-
adaptation strategies: an uniform p = 6 polynomial or-
der (used as a reference), a pressure-based adaptation and
a momentum-based adaptation. For the two p-adaptation
strategies, the maximum polynomial order is limited to
pmax = 6; hence, the uniform p = 6 simulation will al-
ways be more accurate than the p-adaptation solutions, but
also more costly. In Figure 3, we show the error between
both p-adaptation strategies and the reference p = 6 solu-
tion for the pressure field. The solution computed with the
pressure-based adaptation shows a significantly smaller
error. Although momentum-based adaptation is appro-
priate to capture aerodynamic features [2], this problem
highlights the importance of using pressure as the refer-
ence variable for acoustics.

Figure 2. Snapshot of the pressure field.

Finally, in Figure 4 we show the rmse error of the pressure
field, as a function of the degrees of freedom of the mesh,
in a vertical line (from the source to the boundary at the
top) and a diagonal line (from the source to the top-right
corner) for both the momentum-based and the pressure-
based simulations. As expected, the pressure-based adap-
tation shows a decreasing error with the number of de-
grees of freedom, while the momentum-based is not able
to reduce the error below 10−5, even if the mesh is refined.
Therefore, the momentum field is not an appropriate ref-
erence variable to accurately capture acoustic waves.

a) Pressure-based. b) Momentum-based.

Figure 3. Comparison of the pressure error, in re-
lation to the reference p = 6 simulation, between
the pressure-based and the momentum-based adapta-
tions.
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Figure 4. Comparison of the pressure rmse error for
four different meshes, computed in relation to the
reference p = 6 simulation, for the pressure-based
adaptation and the momentum-based adaptation.
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3.2 Multiphase monopole

Once it is demonstrated that the pressure is the appropriate
variable to adapt the polynomial order in acoustic prob-
lems, we simulate a multiphase problem with two fluids:
air and water. In this problem, an acoustic source gener-
ates pressure waves in the air region, which are propagated
to the water region through an interface. The problem is
solved inside a square with a 100 × 100 Cartesian mesh.
To avoid reflections at the boundaries, a sponge is defined
near the boundaries to dampen the acoustic waves. This
setup is shown schematically in Figure 5. As the wave-
length of the pressure waves are different in air and water,
the p-adaptation agent should be able to select the optimal
polynomial order in each region accordingly. Then, as we
want to focus on the propagation of the acoustic waves
from the air to the water, we define the acoustic path from
the source to the boundary at the bottom, as shown in Fig-
ure 6, with a threshold distance of dth = 2.5. This way,
the RL agent will adapt the polynomial order inside the
acoustic path only, reducing the computational cost of the
overall simulation.
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Figure 5. Setup of the multiphase problem.

The pressure field, once the simulation is stable, is repre-
sented in Figure 7 a). As expected, the wavelength of the
pressure waves is significantly longer in the water and,
therefore, the polynomial order should be smaller in that
region. The average polynomial order (among the three
anisotropic polynomials px, py and pz) in each element of
the mesh is shown in Figure 7 b). In this figure, there are
four regions of interest that should be analyzed:

1. Near the boundaries, inside the sponge layer, the

polynomial order has been manually fixed to a con-
stant value to avoid undesired reflections.

2. Above the source, in the air region, but outside the
acoustic path, the polynomial order is set to the
minimum to reduce the computational cost, as we
are not interested in the acoustics there.

3. Inside the acoustic path, in the air region, the wave-
lengths are shorter, and strong pressure gradients
can be found inside some elements. Hence, the RL
agent selects high-order polynomials to accurately
capture the pressure waves.

4. Inside the acoustic path, in the water region, the
wavelengths are longer and low order polynomials
are enough to represent the pressure waves.

In conclusion, the RL agent is capable of selecting the
optimum polynomial order inside the acoustic path, dis-
criminating between different regions, and adapting the
polynomial order accordingly.

Figure 6. Acoustic path of the multiphase problem.

a) Pressure. b) Average polynomial.

Figure 7. Snapshot of the pressure field and the av-
erage polynomial order in each element of the mesh.
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3.3 Cylinder at Reynolds 200

Finally, we propose a more challenging problem, the
direct noise computation (DNC) produced by the flow
around a cylinder at Reynolds 200, where the RL agent
must consider two different adaptation strategies at the
same time: inside the acoustic path, a pressure-based
adaptation is performed to capture the acoustic waves, and
outside the acoustic path, a momentum-based adaptation
is used to represent aerodynamic flow features, such as
vortices. For this problem we solve the full compress-
ible Navier–Stokes (NS) equations, that accounts for both
aerodynamics and acoustic physics. The acoustic path for
this problem and the background mesh are depicted in Fig-
ure 8, where the acoustic source is the cylinder, the ob-
server is defined 20 length units above the source and the
threshold distance is dth = 1. Also, it is necessary to
define two tolerances to let the agent know when the fluc-
tuations of the reference variable inside one element are
negligible. In this case:

tolm = 10−2 tolp = 10−4, (1)

with tolm as the momentum tolerance and tolp as the pres-
sure tolerance.

Figure 8. Acoustic path of the cylinder at Re = 200.

Once the flow field is stable, a snapshot of the average
polynomial order in each element is represented in Fig-
ure 9, where there are three main regions:

1. The acoustic path: The polynomial order is in-
creased to capture the pressure waves between the
source and the observer.

2. The wake: The vortex shedding creates strong ve-
locity gradients in this region, and high-order poly-

nomials are required to accurately represent the
flow field.

3. The far field: Although this region is also adapted
based on momentums, the gradients are negligible,
and the RL agent selects the minimum polynomial
order available in each axis, as nothing of interest
is happening.

Therefore, the RL agent, without additional information
on this particular problem, is able to discriminate between
different regions and to select the optimal polynomial or-
der that provides an accurate solution while keeping the
computational cost down.

Figure 9. Snapshot of the average polynomial order
of the cylinder at Re = 200.

Then, to check the accuracy of the proposed methodology,
we compare the current results with two additional simu-
lations with an uniform polynomial order of p = 3 and
p = 5 in the whole mesh. First, in Figure 10 we show the
root mean square pressure fluctuations along the acous-
tic path, from source to observer. Although the number
of high-order elements in the p-adapted mesh is smaller,
the results show a good agreement with the reference sim-
ulations. Furthermore, the reader may notice that the p-
adapted solution is closer to the reference p = 3 simula-
tion instead of p = 5, which is more accurate. The main
reason behind this behavior is that, close to the cylinder,
the aerodynamic pressure gradients are stronger than the
acoustic fluctuations, but also very smooth. Therefore,
near the cylinder a polynomial order p = 2 or p = 3 is
enough to represent the pressure gradients, reducing the
accuracy of the acoustic waves in that region, which are
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propagated to the observer. To solve this issue, an uni-
form high-order polynomial order could be set around the
body manually. Secondly, in Figure 11 we compare the
SPL measured at the observer’s location with different
approaches, which highlights the accuracy of the current
methodology.
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Figure 10. Comparison of the rms pressure fluctua-
tions from the source to the observer.
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Figure 11. Comparison of the overall SPL at the ob-
server’s location.

Finally, for completeness, the u velocity field following
the x axis is shown in Figure 12, where the vortex shed-
ding is accurately represented, highlighting the effective-
ness of the proposed p-adaptation strategy. In addition,
this problem shows the flexibility of the p-adaptation RL

agent, which can be applied in many different ways (to
different problems, PDEs and meshes) and based on arbi-
trary reference variables, without retraining the agent. All
these advantages make reinforcement learning for adap-
tive mesh refinement a good choice to solve aeroacoustic
CFD problems, including DNC.

Figure 12. Snapshot of the velocity field of the cylin-
der at Re = 200.

4. CONCLUSIONS

In conclusion, this study presents a new approach to ap-
plying anisotropic p-adaptation for acoustics in high-order
h/p solvers using reinforcement learning. The RL-based
adaptation dynamically adjusts high-order polynomials
based on the pressure field to capture acoustic fluctuations.
Furthermore, it can handle different adaptation regions
based on pressure, momentum, velocity, or other flow fea-
tures. The proposed methodology is independent of the
computational mesh and can be applied to any partial dif-
ferential equation, illustrating its broad applicability and
flexibility.
These findings open new avenues for further research in
acoustics and other CFD applications using RL-based h/p-
mesh adaptation.

5. ACKNOWLEDGMENTS

This research has received funding from the European
Union (ERC, Off-coustics, project number 101086075).
Views and opinions expressed are, however, those of the
authors only and do not necessarily reflect those of the Eu-
ropean Union or the European Research Council. Neither
the European Union nor the granting authority can be held
responsible for them.

2198



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

EF and GR acknowledge the funding received by the
Grant DeepCFD (Project No. PID2022-137899OB-I00)
funded by MICIU/AEI/10.13039/501100011033 and by
ERDF, EU.
DH and EF acknowledge the funding received by the Co-
munidad de Madrid according to Orden 5067/2023, of De-
cember 27th, issued by the Consejero de Educación, Cien-
cia y Universidades, which announces grants for the hiring
of predoctoral research personnel in training for the year
2023.
Finally, all authors gratefully acknowledge the Univer-
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