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ABSTRACT

Head-mounted microphone arrays are increasingly preva-
lent in applications ranging from virtual reality to as-
sistive hearing devices. Accurately enhancing binaural
signals from these devices is crucial yet challenging in
complex acoustic environments characterized by multiple
sound sources and significant reverberation. The Relative
Transfer Matrix (ReTM) approach, which generalizes rel-
ative transfer functions for multiple simultaneously active
sources and receivers, has demonstrated success in speech
denoising. This paper addresses the problem of binaural
signal denoising by utilizing ReTM derived from head-
mounted microphone array recordings. Our key contri-
bution is adapting the ReTM computation to accommo-
date the user’s head movements based on head-tracking
data, which enhances the fidelity of the denoising process.
We demonstrate this application with an augmented re-
ality (AR) glass setup, equipped with four microphones
on the frame and two over-ear microphones. The noise-
only ReTM, computed between the on-frame and over-
ear microphones across various head orientations, is em-
ployed to estimate and subsequently subtract noise from
the binaural signal. The simulation results indicate that
a higher resolution of ReTM-Dictionary leads to better
speech quality (STOI, PESQ, SegSNR) scores, with im-
proved preservation of binaural cues (ITD and ILD).
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1. INTRODUCTION

The binaural signal denoising algorithms has been an ac-
tive area of research due to its wide range applications, in-
cluding hearing aid technologies [1-3], cochlear implants
[4,5], Augmented and Virtual Reality (AR/VR) [6,7], and
hands-free communication [8,9]. The primary goal of the
binaural denoising algorithm is to improve speech intel-
ligibility and perceptual quality by preserving spatial au-
ditory cues critical for source localization, accurate au-
ditory scene perception, and immersive listening experi-
ences [2,3].

The binaural denoising algorithms can be broadly
classified into two categories: model-based and data-
driven. The model-based approaches use classical sig-
nal processing techniques such as beamforming (MVDR,
GSC, BLCMYV, BMVDR) [10-13], spectral subtraction
[14], Wiener filtering [15, 16], and Coherence-based fil-
tering [3, 17]. These methods are computationally effi-
cient, making them appropriate for real-time applications
such as hearing aids or AR headsets. However, they often
rely on explicit acoustic models and assumptions about
the environment, making them struggle to generalize in
complex or dynamic acoustic conditions [2, 18]. In con-
trast, the data-driven methods rely on machine learning
techniques to learn mappings directly from data, mak-
ing them more adaptable to diverse noise environments.
These approaches often involve spatial feature extraction
[19], self-supervised and contrastive learning [20], and
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Figure 1: Layout of microphone array embedded in
a pair of spectacles

convolutional neural networks (CNNs) [21,22]. Although
data-driven methods can achieve higher performance in
challenging scenarios, they typically require large train-
ing datasets and may be computationally demanding [23].

In this paper, we present a model-based binaural de-
noising algorithm that leverages the Relative Transfer Ma-
trix (ReTM) [24] as a spatial feature for AR or head-
mounted microphone-array applications. Extending the
theoretical framework established in [24,25], we develop
a ReTM dictionary that captures spatial transfer charac-
teristics across different head orientations, an essential ca-
pability for dynamic AR environments. For binaural sig-
nal denoising, we select the appropriate ReTM from the
dictionary and estimate noise characteristics at the binau-
ral channels, followed by signal subtraction to get the de-
noised signal. The SMIR [26] based numerical simulation
results validate the effectiveness of the proposed binaural
denoising algorithm. The method does not require prior
knowledge of the number of speech and noise sources, nor
microphone locations, and can be extended to any config-
uration with more than three microphones. However, we
assume that noise sources are continuously active, while
speech sources are present intermittently.

The remainder of this paper is structured as follows:
Section 2 introduces the system model and outlines the
estimation of the Relative Transfer Matrix (ReTM) using
a covariance-based approach. Section 3 details the con-
struction of the ReTM dictionary and presents the pro-
posed binaural denoising methodology. In Section 4,
we evaluate the effectiveness of ReTM-based denoising
through numerical simulations using the SMIR genera-
tor [26]. Finally, Section 5 summarizes the key findings
and discusses potential directions for future research.
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2. PROBLEM FORMULATION

In this section, we briefly describe the system model, fol-
lowed by discussing the ReTM as a spatial feature, and
how it can be estimated from the source signal.

2.1 System Model

Consider a reverberant environment in which a user wears
a pair of spectacles equipped with K microphones, as il-
lustrated in Fig.1). The signals captured by these micro-
phones in the Short-Time Fourier Transform (STFT) do-
main are denoted by My(f,t), where k = {1,---, K}.
Also, let there are £ sound sources in the environment,
comprising both speech and noise, represented as Sy (f, t),
£=1{1,---,L}. To facilitate the ReTM estimation, we di-
vide the microphones into two subgroups: a target group
{A} and a reference group {B}. The target group con-
sists of K 4 microphones, while the reference group con-
sists of K p microphones, with K4 < Kp. The signal
components received by each microphone group can be
represented in matrix form as follows,

MA(fat) = HA(f)S(fat)
MB(fvt) HB(f)S(fat)7

where MA(fat) [Mla"'vMKA]T’ S(fat)
(51, Sz]", []T denotes matrix transpose, and H €
CQ4*£ s a matrix with elements defined by the acoustic
transfer functions. Note, we have excluded microphone
thermal noise from this formulation to focus on the core
theoretical development presented in the following sec-
tion.

(D
2

2.2 Relative Transfer matrix (ReTM)

The ReTM characterizes the spatial mapping between two
microphone groups in response to a given set of sound
sources [24]. The ReTM (R 45(f)), between microphone
groups - { A} (target) and { B} (reference) in response to
the sound sources can be modeled as [24]

Ma(f,t) = Ras(f)Mz(f,1). 3)

The theoretical definition of the ReTM [24] is found by
multiplying (2) from left by a suitable pseudo-inverse of
Hg and substituting for S in (1), resulting in

Ras(f) 2 HA(f)HL(S),

where (-)T denotes Moore—Penrose inverse, assuming it is
valid.

“)
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Note, the ReTM (4) is a matrix defined solely by the
spatial characteristics of the sound sources, microphone
receivers, and the surrounding acoustic environment [24].

2.3 ReTM Estimation

The ReTM estimation is based on covariance matri-
ces [24,25], a methodology widely used in the MUSIC
source localization technique [27]. The auto and cross-
covariance matrix of the received signals at microphone
groups - { A} and { B} can be defined as,

Paa(f) & E{Ma(f.t)Mx"(f,1)}

Pral(f) £ E{Mg(f,t)M"(f,1)}
where [-]* is conjugate transpose, and E{-} denotes the
expectation, which can be found from averaged time

frames. The ReTM is estimated by multiplying the
pseudo-inverse of Pga(f) to Paa(f) [24,25], as

(&)

*

Ras(f) = Paa(f)Pha(f)- 6)

Note that the estimated ReTM in (6) is an approximation
only, as the microphones inevitably experience additive
thermal noise in practice [24].

3. BINAURAL SIGNAL DENOISING WITH
RETM-DICTIONARY

Consider a scenario where a user wearing a microphone
array integrated into AR glasses wants to converse with
a friend (the target speaker) in the same room. A loud
static noise source, such as a television, interferes with
the speech signal, making comprehension difficult. To
denoise the speech signal in a multi-microphone setting
with static noise, we previously presented a ReTM-based
approach in [25]. However [25] assumes that the micro-
phone array remains stationary with respect to the noise
source. In real-world scenarios, such as a person wearing
AR glasses with embedded microphones, this assumption
often does not hold. During conversation, the user may
move their head, nod, or make other gestures, resulting
in changes to the array’s orientation (azimuth and eleva-
tion). These changes to the array orientations make it chal-
lenging to apply a static ReTM for effective denoising, as
the spatial relationship between the microphones and the
noise source is no longer static.

To overcome this limitation, we propose a ReTM-
Dictionary-based binaural signal denoising method that
accounts for dynamic head movements. Our approach

leverages a pre-computed dictionary of ReTMs corre-
sponding to various head orientations. When the user first
enters the room and takes a seat, natural head movements
will cause the system to capture noise recordings from
multiple orientations. These recordings are then used to
compute a ReTM-Dictionary, mapping static noise char-
acteristics to specific head poses. During the actual con-
versation, the AR glasses continuously track the user’s
head orientation in real time. Based on the detected orien-
tation, the appropriate ReTM from the dictionary is used
to effectively denoise the incoming noisy mixture.

3.1 Framework for ReTM Dictionary

This section builds upon our previous work in [25],
where we introduced the use of ReTM for speech de-
noising in scenarios involving multiple simultaneously ac-
tive sources and receivers. Here, we assumed that noise
sources were continuously active, while speech sources
appeared only intermittently. Additionally, both the noise
sources and the recording microphones were considered
spatially stationary, which allowed us to average the
ReTM across time frames.

However, for applications such as AR glasses
equipped with embedded microphone arrays, this assump-
tion no longer holds. Head movements cause the orienta-
tion of the microphone array to change over time, result-
ing in spatial variations in the transfer functions between
sources and microphone groups A and B.

To address the time variant requirement of the ReTM
for applications having dynamic array orientations, we
propose a ReTM dictionary that captures different array
orientations corresponding to various head positions. As-
sume we have access to multi-channel (> 3) recordings
for static noise sources but varying head orientations, we
can segment the recordings into intervals during which the
head orientation remains constant. For each such interval,
we estimate a ReTM using (6), thereby building a dictio-
nary of ReTMs associated with different orientations.

3.2 Binaural signal denoising

For binaural signal denoising using the ReTM dictionary,
we choose the binaural channels as the target group {A},
and the remaining channels on the array as the refer-
ence group {B}. Consider a reverberant environment
with £L = Lg + Ly sound sources, where Lg repre-
sents speech sources and Ly represents noise sources. We
also define source signal S(f,t) £ [S®; S™]T, where
S (f,t) represents speech signals of dimension Lg X 1,
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and SN represents noise signals of dimension £y X 1.
Also, Ha(f,0,0) = [HY HY] and Hg(f,0,¢) =
[H H{Y] are the matrix with elements defined by the
acoustic transfer functions. Here, (6, ¢) are the azimuth
and elevation of the microphone array orientation. Also,
H'Y, HY are the transfer functions from speech sources
to microphone groups {A} and {B}, and HY, H are
the transfer functions from noise sources to microphone
groups {A} and {B}.

Hence, from (4) the time variant noise source ReTM
of microphone groups {A} and { B} is,

RWN(f,0,0) 2 HYO(£,0, ) (HS (£,0,0), ()

where (-)T denotes Moore—Penrose inverse, assuming it is
valid.

To perform binaural denoising, we begin by determin-
ing the head orientation for each recording segment using
head-tracking data from AR glasses. Based on the identi-
fied orientation, we select the appropriate ReTM matrix
(’R,gg (f,0,¢)) from the precomputed dictionary. This
matrix is then multiplied by the signal vector from micro-
phone group B, denoted as Mg(f,t), followed by sub-
stracting the result from M A (f,t) to obtain,

MA(f’t) 7’R',(§B)(f703¢) MB(fat)

= [HA(f,0,0) — RA(f.0,0) Hy(f.0,0)] S(f.1),
®)

where we use (1) and (2). Following the approach
in [24], we substitute the expression for Ha(f, 6, ¢),
Hg(f,0,0), 712\113)(]”,07 ¢), and S(f,t) in (8), leading to
the denoised signal:

MA(fvt) _Rg\g(faea(b) MB(f7t)

= [HY(f,0.0) - RE(f.0,0) HY(f.0,6)] SO(f,1)
©)]

which represents the spatially filtered speech component
based on orientation-specific ReTM.

4. SIMULATION ANALYSIS

In this section, we evaluate the effectiveness of ReTM-
based binaural denoising across different SNR levels and
ReTM dictionary resolutions. The resolution of the ReTM
dictionary is defined by the step size of the azimuth angle
(0) within the range —45° to 45°, where a larger step size
corresponds to a lower resolution. The performance of
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Figure 2: Approximate setup of the receiver and
source positions in the SMIR based numerical sim-
ulations.

the binaural denoising algorithm is assessed through nu-
merical simulations using the SMIR generator [26]. We
use five widely adopted evaluation metrics: Short-Time
Objective Intelligibility (STOI) [28] and Perceptual Eval-
uation of Speech Quality (PESQ) [29] for speech clarity,
Segmental SNR (SegSNR) [30, 31] for noise suppression
capability, and Interaural Time Difference (ITD) and In-
teraural Level Difference (ILD) [32] for preserving binau-
ral cues. STOI scores range from 0 to 1, with higher values
indicating better speech intelligibility. PESQ scores range
from -0.5 to 4, with higher scores reflecting better per-
ceived speech quality. Similarly, higher SegSNR values
indicate more effective noise suppression.

4.1 SMIR based Numerical Simulation

For the numerical simulations, we model the acoustic
transfer function between sources and receivers using
an ISM-based SMIR generator [26, 33]. The simula-
tion takes place in a rectangular room with dimensions
8 m x 6 m x 3 m, and a reverberation time (RT60) of 645
ms. The SMIR generator is configured for a rigid sphere
model with 30 harmonics. As shown in Fig.2, the micro-
phone array is positioned on the head of S1 at coordinates
(4.0,2.5,1.0) m. The target speech source (S2) is posi-
tioned 1.45m from the center of the microphone array, in
the same horizontal plane, with an azimuth angle of 40°.
Two interference sources (N1 and N2) are placed 1.85m
and 1.20m from the microphone array center, also in the
same horizontal plane, at azimuth angles 150° and 310°
respectively. To simulate head rotations for S1, we vary
the azimuth angle (#) within the range —45° to 45°, while
keeping the elevation fixed at ¢ = 0. All signals are pro-
cessed in the short-time Fourier domain using a window
size of 16384 samples, a sampling rate of 16 kHz, and a
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total duration of 300 seconds. We simulate two interfer-
ing source scenarios: i) 1 Noise (Music (N2)), 1 Speech
(S2) - IN1S, i) 2 Noise (TV (N1), Music (N2)), 1 Speech
(S2) - 2N1S, with SNR in the -10 dB: 5 dB: 10 dB range.
In addition, to simulate thermal noise at the microphones,
Additive White Gaussian Noise (AWGN) with a SNR of
40 dB is added to each source signal.

We generate two sets of recordings: training and test.
For the training set, we simulate separate recordings for
each source configurations (IN1S and 2N1S), and dis-
crete head orientation (6 : —45° to 45°, ¢ = 0), using
pre-computed room impulse responses (RIRs). In these
recordings, only the noise sources are active, while the
speech source remains silent. Each head orientation is
recorded for 60 seconds, with the total number of record-
ings depending on the ReTM resolutions. These record-
ings are used to compute the ReTM dictionary, as de-
scribed in sub-section 2.3.

For the test set, we simulate recordings in which the
head orientation dynamically changes among 8 to 12 ran-
domly selected azimuth angles within the same —45° to
45° range. For each SNR level and interference condi-
tion (IN1S and 2N15S), we generate 300 seconds of audio.
During this period, the head orientation can change mul-
tiple times, with each orientation maintained for a min-
imum of 5 seconds. The noise sources remain continu-
ously active throughout, while the speech source is inter-
mittently active and consists of female utterances drawn
from the TIMIT dataset [34]. Head orientation is tracked
every 0.5 seconds and used to select the appropriate ReTM
from the dictionary during denoising, as described in sub-
section 3.2.

4.2 Results and Discussions

Table 1: Comparison of Binaural Signal Cues across
various ReTM Resolutions for IN1S, SNR level 0 dB

ReTM Resolution ITD (ms) ILD (dB)
(w.r.t 0 step-size) Before After Before After
Ref. (6 =0°) 0.227 0.295 -0.458 -1.127
45° 0.283 -0.926
30° 0.261 -0.673
15° 0.244 -0.581
10° 0.238 -0.517
5° 0.233 -0.482
2.5° 0.231 -0.479
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Table 1 compares the ITD and ILD scores for vari-
ous ReTM-Dictionary resolutions, in a IN1S - interfering
source scenario at 0 dB SNR. The reference corresponds
to the reverberant speech signal at § = 0°, while the other
rows show post-denoising values for increasing ReTM-
Dictionary resolutions (i.e., smaller 6 step-size). The re-
sults demonstrate that higher ReTM resolutions lead to
improved preservation of binaural cues. As the step-size
of 8 decreases (from 45° to 2.5°), both ITD and ILD val-
ues after denoising increasingly align with the reference.
For instance, at # = 2.5° (ReTM resolution = 37), the de-
viation in ITD and ILD scores before and after denoising
is minimal. In contrast, at § = 45° (ReTM resolution =
3), the post-denoising ITD and ILD scores show signifi-
cant deviation, indicating notable loss of spatial informa-
tion. These findings are consistent with our expectations,
as higher ReTM resolutions allow more accurate estima-
tion of the noise field at the binaural channels (microphone
group {A}), enabling better preservation of spatial cues
during denoising.

Table 2 analyses the impact of SNR levels and
ReTM-Dictionary resolutions (in terms of 6§ step-size) by
comparing the speech quality metrics - STOI, PESQ, and
SegSNR scores before and after denoising for interfer-
ing source scenario - 2N1S. From the table, it is evident
that STOI, PESQ, and SegSNR scores improve with an
increase in ReTM resolution (i.e., smaller € step-size).
This improvement is most notable at lower SNR lev-
els (-10 dB), as the enhancement effects are more sig-
nificant. For instance, at -10 dB, the STOI score im-
proves from 0.357/0.335 (Left/Right) at the reference to
0.475/0.462 at 2.5° 0 step-size, and PESQ score improves
from 1.457/1.417 to 1.818/1.791. Similarly, segSNR
score increases from -3.595/-3.890 to -2.746/-2.851, in-
dicating the noise suppression effect. As the SNR level
increases from -10 dB to +10 dB, the overall speech qual-
ity improves. However, the relative benefit of using a
finer ReTM resolution decreases at higher SNRs, sug-
gesting a saturation effect for low SNR levels. Addi-
tionally, the speech quality metrics—STOI, PESQ, and
SegSNR—consistently yield high scores, demonstrating
the effectiveness of the proposed binaural denoising al-
gorithm. Overall, finer ReTM resolutions lead to better
speech enhancement performance, and this makes sense
as higher ReTM resolutions allow more accurate estima-
tion of the noise field at the binaural channels (microphone
group {A}), enabling better preservation of spatial cues.
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Table 2: Comparison of Speech Quality Metrics across various ReTM Resolutions and SNR Levels for 2N1S

SNR R::((:;l;l 1:/;011 STOI STOI PESQ PESQ segSNR segSNR
. Before After Before After Before After
(0 step-size)

Left Right Left Right Left Right Left Right Left Right Left Right
Ref. (Az=0°) 0.199 0.163 0.357 0.335 0917 0.869 1.457 1.417 -9.631 -10.00 -3.595 -3.890
45° 0.366 0.351 1.496 1.459 -3.457 -3.618
30° 0.384 0.373 1.552 1.520 -3.296 -3.417
-10 15° 0.402 0.390 1.629 1.602 -3.119 3.296
10° 0.440 0417 1.715 1.697 -2.985 -3.058
5° 0.467 0.434 1.786 1.758 -2.785 -2.875
2.5° 0.475 0.462 1.818 1.791 -2.746 -2.851
Ref. (Az=0°) 0.419 0.399 0.559 0.539 1.496 1.479 1.928 1.879 -0.093 -0.803 3.999 3.682
45° 0.569 0.555 1.997 1.953 4.346 4.165
30° 0.589 0.567 2.060 2.017 4.429 4.249
0 15° 0.609 0.587 2.144 2.101 4371 4.317
10° 0.639 0.620 2.228 2.185 4.528 4.465
5° 0.679 0.662 2.289 2.249 4.675 4.586
2.5° 0.694 0.690 2.317 2.298 4.694 4.652
Ref. (Az=0°) 0.582 0.571 0.650 0.647 1.762 1.744 2.404 2.390 10.138 10.085 12.209 11.965
45° 0.675 0.657 2457 2.427 12.261 12.042
30° 0.698 0.676 2.520 2.479 12.413 12.298
10 15° 0.726 0.705 2.569 2.538 12.566 12.397
10° 0.751 0.741 2.597 2.572 12.706 12.579
5° 0.795 0.779 2.637 2.630 12.928 12.794
2.5° 0.803 0.791 2.642 2.640 12.986 12.879

S. CONCLUSION

In this paper, we have presented a binaural signal de-
noising algorithm leveraging ReTM dictionary as a spa-
tial feature for head-mounted microphone array applica-
tions. By constructing a dictionary of noise-only ReTMs
corresponding to various head orientations and leverag-
ing head-tracking data in real time, our approach effec-
tively adapts to dynamic head movements, crucial for
AR or head-mounted microphone array applications. The
results demonstrate that higher ReTM-Dictionary reso-
lutions lead to improved preservation of binaural cues
(ITD and ILD). The speech quality metrics (STOI, PESQ,
SegSNR) also show consistently high scores, indicating
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the effectiveness of the proposed binaural denoising algo-
rithm. Overall, the results are consistent with our expecta-
tions, as higher ReTM resolutions allow more accurate es-
timation of the noise field at the binaural channels (micro-
phone group {A}), enabling better preservation of spatial
cues during denoising. Future extensions involve develop-
ing a machine learning-based model that emulates our al-
gorithm and evaluating its performance in dynamic noise
environments with multiple simultaneous target sources.
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