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ABSTRACT

The emergence of topological states in condensed matter
physics has provided reliable mechanisms for waveguid-
ing in phononic crystals and metamaterials. This study
introduces a strategy for dynamic wave localization us-
ing space-time programmable topological interface states
in piezoelectric metamaterials. By dynamically tuning in-
ductive shunt circuits, we induce and modulate interface
states in space and time without physical changes in the
host structure. By modulating electrical properties, the
topological interface can be dynamically moved along the
beam, enabling efficient energy transfer. The numerical
results clarify the effects of modulation smoothness on
wave localization for cases with and without structural
damping, identifying the optimal conditions for robust en-
ergy transfer.

Keywords: piezoelectricity, programmable metamate-
rial, topological interface states, structural damping

1. INTRODUCTION

The discovery of topological states in condensed matter
physics has led to innovative methods for manipulating
waves in metamaterials [1, 2]. The topological protec-
tion of these states, which confine mechanical waves to
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edges or interfaces between regions with distinct topolog-
ical properties [3], provides robustness against backscat-
tering caused by imperfections or disturbances along the
propagation path [4]. In contrast to their electronic coun-
terparts [5], acoustic and elastic systems offer greater flex-
ibility in the design, fabrication, and detection of diverse
topological phenomena [6]. In this context, breaking the
spatial inversion symmetry while maintaining the time-
reversal symmetry can be achieved in the subwavelength
regime by manipulating piezoelectric inductive shunt cir-
cuits [7]. In this sense, connecting two metamaterials with
distinct Zak phases allows the emergence of a topological
interface state that presents significant vibration energy lo-
calization [8].

Recent years have seen significant interest in explor-
ing metamaterials with adaptable and programmable char-
acteristics, particularly due to their potential for versatile
control over wave propagation. [9]. Recent studies have
concentrated on multi-coupling domains to improve re-
configurability. Within this context, piezoelectric mate-
rials have become a popular choice due to their versatility
in controlling wave behavior. This is achieved by adjust-
ing digitally controlled analog and digital shunt circuits,
as opposed to traditional analog shunts. This advance-
ment has enabled the experimental implementation of pro-
grammable metamaterials [10,11]. This advanced control
strategy enables the design of materials with spatiotempo-
ral modulation, enhancing metamaterials by adding an ex-
tra dimension of tunability through dynamic adjustments
of their properties in both space and time [12].

In this work, we build upon a recently introduced ap-
proach that utilizes space-time modulation of trivial de-
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fects [13, 14] and extend it to programmable topological
interfaces within an electromechanically coupled metama-
terial beam. By applying cosine-based modulations to the
electrical properties of the unit cells, we demonstrate that
the topological interface can be dynamically repositioned
along the beam, enabling efficient energy transfer while
preventing energy leakage. Additionally, we discuss the
effects of structural damping on the modulation perfor-
mance and energy availability for further operations.

2. MODEL DESCRIPTION

Fig. 1 depicts the electromechanical metamaterial, which
consists of a thin conductive substructure sandwiched by
two oppositely poled piezoelectric layers. The outer sur-
faces of the thin and conductive electrodes covering each
piezoelectric layer are periodically segmented, and each
segment is connected to an inductive shunt circuit, char-
acterizing a local resonator with the equivalent in-series
piezoelectric capacitance. The unit cell highlighted in
Fig. 1 comprises four consecutive local resonators with
the outer and inner inductances set as L1 (blue induc-
tances) and L2 (red inductances), respectively. Thus,
the unit cell has a mirror symmetry regarding the central
point. A dimerization parameter δ is defined to generate
L1 = Lr(1 + δ) and L2 = Lr(1 − δ), where Lr is a
reference inductance.

The metamaterial beam is discretized into one-
dimensional finite elements based on the Euler-Bernoulli
assumptions. A third-degree polynomial is employed to
approximate the transverse displacement field within each
element that has two degrees of freedom per node, de-
noted as transverse displacement (w) and rotation about
the y direction (θ) [15]. In the electrical domain, the non-
zero electric field component is assumed to be uniform in
the thickness direction of the piezoelectric layers. Con-
sequently, one electrical degree of freedom is sufficient to
model the voltage output in each electrode’s segment. The
structural dissipation is included using Rayleigh’s propor-
tional damping model. Consequently, the behavior of the
piezoelectric metamaterial beam is governed by the fol-
lowing finite elements equations [16],

Mü+Du̇+Ku−Θv = F (1a)

Cpv + q+Θtu = 0 (1b)

where M is the global mass matrix (nm × nm), K is the
global stiffness matrix (nm × nm), D is the structural

damping matrix (nm × nm), F is the vector of external
mechanical inputs (nm × 1), Θ is the electromechanical
coupling matrix (nm × ne), Cp is the capacitance matrix
(nm × ne), v is the vector of voltage output from each
electrode segment (ne × 1), q is the vector of electrical
charges (ne × 1), u is the vector of mechanical degrees of
freedom (nm×1), which contains the transverse displace-
ments and rotations (about the y direction) associated to
each node, and nm and ne are the number of mechani-
cal and electrical degrees of freedom, respectively. The
over-dots represent the derivative with respect to time t.

When considering time-varying inductances in each
shunt circuit, the voltage output from each electrode seg-
ment is determined by v(t) = L̇c(t)q̇+Lc(t)q̈, where Lc

is a diagonal matrix (ne×ne) that contains the inductances
connected to each segment of electrode. In this case, the
matrix representation of Eqs. 1 is[
M −ΘLc

0 CpLc

] [
ü
q̈

]
+

[
D −ΘL̇c

0 CpL̇c

] [
u̇
q̇

]
+

[
K 0
Θt I

] [
u
q

]

=
[
F
0

]
(2)

where I is the identity matrix (ne × ne). Equation 2 rep-
resents a multiphysical problem, wherein the mechanical
and electrical domains are coupled through the electrome-
chanical coupling matrix Θ (off-diagonal elements of the
matrices). In each unit cell, the combination of the induc-
tive shunt Lcj and the effective capacitance of the piezo-
electric bimorph Cpj

forms a capacitive-inductive circuit
whose resonance frequency is ωnj

= 1/
√
Cpj

Lcj .
In Fig. 1, each electrode segment has length ls and

width b equal to 20 mm. The substructure has thickness
hs of 1 mm, the elastic modulus is cs = 69 GPa, and
mass density ρs = 2700kg/m3. The substructure is sand-
wiched by two PMN-PT piezoelectric layers, each with a
thickness hp of 0.6 mm. The elastic modulus of the PMN-
PT crystal at a constant electric field is c̄E11 of 21.8GPa, an
effective piezoelectric stress constant e31 of −14.1C/m2,
a permittivity component at a constant strain ϵS33 of 33
nF/m, and a mass density ρp of 8120 kg/m3.

The angular frequency axis in the results is nor-
malized by the velocity of the longitudinal wave con-
sidering the composite material’s average properties.
Accordingly, the normalized frequency assumes Ω =
ωls/(2π

√
Yavgρavg), where Yavg = vf/Ys+(1−vf )/Yp

and ρavg = vfρs + (1 − vf )ρp are the average mod-
ulus and the average mass density, respectively, while
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Figure 1. Scheme of the locally resonant elec-
tromechanical metamaterial, where the light gray and
white regions represent the piezoelectric and sub-
structure layers, the blue regions represent the elec-
trodes. The highlighted region depicts the unit cell,
where the blue and red inductances are associated
with L1 and L2, respectively.

vf = hs/(hs + 2hp) is the volume fraction of the sub-
structure and Yp = 1/sE11 is the piezoelectric elastic mod-
ulus. In addition, the finite element mesh for the numer-
ical calculations is assumed as 12 elements per unit cell,
which gives approximately 1.1 mm for each element. This
value corresponds to 3% of the smallest wavelength ana-
lyzed, which can capture the studied dynamic behavior
effectively.

3. RESULTS

Fig. 2 depicts the band structure for three unit cells, one
tuned with δ = 0 (Fig. 2(a)) and tuned with δ = ±0.05
(Fig. 2(b)), where Lr = 0.576 H. The unit cells tuned
with δ = 0.05 are named UCA in this work while the
ones tuned with δ = −0.05 are UCB. The numerical pro-
cedures combine the Bloch-Floquet periodic conditions
with the finite element matrices where the electrical out-
puts are considered internal degrees of freedom (for more
details, see [13]). An inverse eigenproblem (i.e., ω(κ))
is solved for each wavenumber κ. According to the pre-
sented results, the homogeneous unit cell (i.e., δ = 0) fea-
tures a locally resonant band gap between Ωl = 0.0153
and Ωu = 0.0169. In addition, a folding point appears
at Ωf = 0.0150 (red circle in Fig. 2(a)). The folding
point opens to generate a band gap in the subwavelength
region (green region) for the non-homogeneous unit cell
(i.e., δ ̸= 0). Although the band structures of the unit
cells tuned with δ ± 0.05 are identical, they have distinct

topological properties due to band transition and inver-
sion, which characterizes a topologically non-trivial band
gap [17].

Figure 2. Dispersion relation of the unit cell tuned
with δ = 0 (a) and δ = ±0.05. The red circle in-
dicates the folding point whereas the green region
highlights the non-trivial band gap.

The emergence of a topological interface mode is ex-
amined through the harmonic response of a finite piezo-
electric metamaterial beam consisting of 16 unit cells —
8 unit cells UCA to the right and 8 unit cells UCB to the
left, creating an interface between them. A harmonic point
excitation, denoted as F̄ (L/2,Ω) (where L represents the
total length of the metastructure), is applied at the inter-
face position. The corresponding harmonic transverse dis-
placements, w̄(x,Ω), are obtained along the metastruc-
ture as well as the amplitude of the transfer functions
20log10|ŵ(x,Ω)/F̂ | (dB, reference 1 m/N). Fig. 3(a)
shows the harmonic response as a function of space and
frequency for the periodic configuration (the metamate-
rial beam with 16 unit cells tuned with δ = 0.05). Fig.
3(b) displays the harmonic response for the topological
metamaterial (metamaterial with 8 unit cells tuned with
δ = 0.05 and 8 unit cells tuned with δ = −0.05). Three
attenuation zones are observed in the responses of the
periodic configuration and the topological metamaterial
beam. These consist of two Bragg band gaps and a locally
resonant band gap situated between them, which is consis-
tent with the dispersion previously presented for the unit
cells. Figure 3(b) displays a resonance peak within the
first non-trivial Bragg band gap (green region depicted in
Fig. 2(b)), which corresponds to the topological interface
state.

After examining the behavior of a topological meta-
material with a fixed interface, we now investigate its pro-
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Figure 3. Maps displaying harmonic responses as
a function of both spatial position and frequency for
the periodic metastructure without topological inter-
face (a) and for the topological metastructure with
topological interface (b).

grammable counterpart. We perform the space-time wave
localization by dynamically modulating the interface in
both space and time. This approach involves transforming
one of the unit cells adjacent to the interface into its topo-
logical counterpart while keeping the others unchanged.
As a result, the interface can only shift between succes-
sive unit cell boundaries within a single modulation cycle.
In this framework, modifying a unit cell initially set to
δ = 0.05 (δ = −0.05) requires that the inner electrome-
chanical resonators are changed from Ωt1 (Ωt2 ) to Ωt2

(Ωt1 ), while simultaneously updating the outer electrome-
chanical resonators from Ωt2 (Ωt1 ) to Ωt1 (Ωt2 ). Conse-
quently, vibrational energy is expected to be transferred
from the initial interface location to the final interface po-
sition.

The essential mechanism for achieving a perfect en-
ergy transfer across successive unit cell boundaries in-
volves the smooth and synchronized adjustment of each
local resonator’s frequency. In this study, cosine functions
are employed to modulate the local resonant frequency, af-
fecting the inductance of each shunt circuit during space-
time transitions. These functions are of interest in this ap-
plication since they present zero-time derivatives at the be-
ginning and end of the transition intervals and are contin-
uous throughout the entire domain. For convenience, we
denote the unit cells on the left and right of the topological
interface with the indices j and j + 1, respectively. If the
interface is intended to move to the right (left) side, then

the unit cell represented by m = j + 1 (m = j) is topo-
logically converted. Furthermore, consider Ωm1 and Ωm2

as the frequencies of local resonators, which are initially
tuned to Ωt1 and Ωt2 within the unit cell m to be con-
verted, respectively. Therefore, the variation of the locally
resonant frequencies defined by Ωm1

from Ωm1
/Ωt1 = 1

to Ωm1/Ωt1 = Ωt2/Ωt1 = η is governed by the following
law during the time interval tij ≤ t ≤ tfj :

Ωm1

Ωt1

(t) =
(1 + η)

2
− (η − 1)

2
cos

(
t− tij
tfj − tij

π

)
(3)

simultaneously, the change in locally resonant frequencies
defined by Ωm2

from Ωm2
/Ωt1 = η to Ωm2

/Ωt1 = 1:

Ωm2

Ωt1

(t) =
(1 + η)

2
+

(η − 1)

2
cos

(
t− tij
tfj − tij

π

)
(4)

where tij and tfj are, respectively, the initial and final
time steps of the transition. Likewise, the transition about
the mth unit cell can be characterized through δm(t) =
(Ωm2(t)

2 −Ωm1(t)
2)/(Ωm2(t)

2 +Ωm1(t)
2). The rate of

change of the frequencies of the local resonator, dΩm1/dt
and dΩm2

/dt, affects the energy transfer over space and
time. To control the transition smoothness, we define the
transition interval as integer multiples Nj of the excitation
period T , i.e., ∆τj = tfj − tij = NjT . In the case involv-
ing more unit cells, e.g., the interface displacement from
the boundary between the jth and (j+1)th unit cells to the
boundary between the (j + 3)th and (j + 4)th unit cells,
the time values must be chosen so that tij+2

≥ tfj+1
and

tij+3
≥ tfj+2

, which means that the next transition only
begins when the previous has been finished.

The feasibility of the previously discussed strategy is
illustrated through simulations in the time domain. The
Newmark method at a constant time step configured with
γ = 0.5 and β = 0.25 (average constant acceleration
scheme) [18] was employed to conceive multiple transi-
tion scenarios. A point force excitation is applied at the
interface position and modeled as a sine burst (sinusoidal
envelope) with a central frequency of Ω = 0.01496 (cor-
responding to the frequency of the topological interface
mode). The force magnitude is 0.1 N with a duration of
100 periods (i.e., 100T , where T corresponds to one pe-
riod). The interface is initially assumed at the center of
the beam, between unit cells 8 and 9. Equations 3 and 4
are used to create the programmable topological interface
from the center of the beam to the location between unit
cells 12 and 13.

82



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

In the first transition unit cell 9 is changed from
δ = −0.05 to δ = 0.05, i.e., the inductors are time mod-
ulated from the L2L1L1L2 configuration to L1L2L2L1

and, therefore, the space-time vibration energy localiza-
tion around the new interface position (between unit cells
9 and 10) is observed. Subsequently, unit cell 10 is mod-
ified from δ = −0.05 to δ = 0.05 configuration, result-
ing in space-time vibration energy localization around the
new interface position between unit cells 10 and 11. Later,
the electrical inductances of the unit cell 11 are updated,
resulting in the new tuning δ = 0.05 and, consequently,
changing the interface to the new position between unit
cells 11 and 12. Finally, unit cell 12 is gradually changed
from δ = −0.05 to δ = 0.05, creating a new interface
between unit cells 12 and 13 and, finally, vibration energy
localization around the new topological interface position.

Fig. 4 displays the transitions for two cases. The first
one, displayed in Fig. 4(a), assumes an undamped config-
uration and N = 100. The white dots delimit the mod-
ulation intervals, where the stages II to V represent the
time modulation of the inductors of unit cells 9 to 12, re-
spectively. The perfect space-time vibration energy trans-
fer along each smooth transition is observed in Fig. 4(a),
where the energy initially confined around the center of
the metamaterial beam is gradually and perfectly trans-
ferred to the final interface position. Fig. 4(b) shows the
result for a damped configuration, i.e., ζ = 0.002. Even
considering that the amplitude of motion is reduced over
time due to dissipation effects, vibration energy is local-
ized at the final interface position. Although not shown in
this work, there is a trade-off between modulation speed
and the available energy in the final state in the presence
of damping [14].

Figure 4. Multiple smooth modulations for the un-
damped (a) and damped (b) cases.

4. CONCLUSIONS

This study introduced a framework for space-time wave
localization using programmable topological interface
states in electromechanically coupled metamaterials. En-
ergy transfer between programmable interfaces was suc-
cessfully demonstrated by smoothly modulating inductive
shunt circuits in an undamped metastructure. Although
the amount of vibration energy was reduced throughout
the modulations, successful modulations could be ob-
served in the presence of structural damping.
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