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ABSTRACT

The experimental evaluation of the directivity of a non-
repeatable sound source necessitates the simultaneous ac-
quisition of signals from microphones distributed on a
sphere centered on the source with a high spatial resolu-
tion. Placing a high number of microphones at precise,
pre-determined positions is a laborious task that is subject
to inaccuracies. The Helmholtz Equation Least Squares
(HELS) method is an imaging technique originally used
in near-field acoustic holography. This method involves
decomposing the sound field measured around a source
into a basis of functions that solve the Helmholtz equa-
tion. Once this decomposition has been identified, any
acoustic quantity can be reconstructed around the source.
Recent simulated and experimental studies have demon-
strated that the HELS method consistently estimates the
far-field directivity of a sound source from measurements
performed on an arbitrary surface around the source. The
present study utilizes a sphere-like array of 3 m-diameter
and around 600 MEMS microphones installed in an ane-
choical room to measure the directivity of a reference
sound source. The truncation order of the basis function
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is chosen based on a cross-validation procedure and on
stability considerations. Measurements on human singers
are presented and compared to recent findings on human
voice directivity.
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crophone arrays, spherical waves.

1. INTRODUCTION

Over the past two decades, numerous research projects
have investigated the directivity of natural sound sources
[1, 2], particularly that of the human voice [3–5]. Indeed,
the latter can present complex patterns due to the geomet-
ric peculiarities of the face and body of the speaker [3].
Most of these works are affected by some of the follow-
ing limitations. Firstly the estimates may be restricted to
horizontal and/or vertical planes [3] failing to account for
the inherently 3D nature of vocal radiation. Going be-
yond 2D planes has been attained by either scanning a
surrounding sphere by moving an array of microphones
around the speaker [4], or paving the sphere with a rather
low number of microphones [5]. Both options have major
drawbacks. The former relies on the strong assumption
that vocalisations are repeatable enough to ensure a reli-
able 3D reconstruction, while the latter requires the use
of interpolation methods to enhance the resolution of the
directivity function estimate [5].

The Helmholtz Equation Least Squares (HELS)
method was introduced in order to reconstruct the acous-
tic quantities on a vibrating surface of arbitrary shape [6].
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It relies on the expansion of the acoustic field around the
source in an orthonormal basis of functions that satisfy the
wave equation. In spherical coordinates, this is known as
the spherical wave decomposition (SWD).

Despite its initial development for near-field acous-
tic holography (NAH), the HELS method has recently
been applied to the far-field directivity (FFD) estimation
of sound sources in numerical and real-life experiments
involving hundreds of microphones [1,7,8]. However, the
existing experimental studies focus on controlled sources
and only barely address the definition of an adequate trun-
cation order N for the SWD. Ref. [8] proposes to choose
a value of N that minimizes a cross-validation metric, but
does not analyse the behaviour of this metric with N .

In this work, the HELS method is first applied to the
experimental reconstruction of the FFD of human voice.
Section 2 recalls the principle of the HELS method and
presents the experimental setup used in the present study.
Section 3 analyses the behaviour of the cross-validation
error defined in Ref. [8] and proposes a mixed criterion
that accounts for both the cross-validation error and the
stability of the HELS inverse problem for defining an op-
timal truncation order. Section 4 shows that the measure-
ments on the controlled source highlight the order limita-
tion of the array, and presents examples of reconstructed
human voice FFD. Section 5 concludes the present study.

2. METHOD

2.1 The HELS method for far-field directivity
estimation

2.1.1 Formulation of the HELS inverse problem

At frequency f and corresponding acoustic wavenum-
ber k = 2πf/c0 (with c0 the speed of sound in air),
the sound field radiated by a sound source centered at
the origin of a system of spherical coordinates (r, θ, ϕ)
can be expanded as a weighted sum of spherical waves
(ψm

n (kr, θ, ϕ))(n∈N,m≤n) [9]

p(r, θ, ϕ) =

+∞∑
n=0

cmn(k)ψ
m
n (kr, θ, ϕ), (1)

where cmn(k) are the coefficients of the expansion. The
spherical waves of order n and degree m are products of a
spherical Hankel functions hn(kr) of the second kind and
of spherical harmonic functions of order n and degree m.

If the sound field is sampled around the source at
Q positions (rq, θq, ϕq)q∈[0,...,Q−1] and if the series in

Eq. (1) is truncated at order N , the vector p of measured
pressures (p(rq, θq, ϕq))q∈[0,...,Q−1] can be written [7]

p = Hc, (2)

where c is the truncated vector of the (N + 1)2 coeffi-
cients (cmn(k)) arranged in a column according to the
Ambisonic Number Sequence, and where H is a matrix
whose columns correspond to spherical waves of given or-
ders and degrees sampled at the measurement positions.

2.1.2 Estimation of the far-field directivity function

The vector of the truncated SWD coefficients (2) can be
estimated in a ℓ2-regularized least-squares fashion

ĉ = (HHH+ λI)−1HHp, (3)

whereH is the Hermitian transposition, I is the (N+1)2×
(N + 1)2 identity matrix, and λ is a regularization coef-
ficient. Ref. [1] mentions that regularization improves the
reconstruction when the array used for the measurement
presents uncovered areas. The array shown in Fig. 1 is
supposed sufficiently dense, which justifies the absence of
regularization in what follows (λ = 0).

The acoustic pressure can be estimated anywhere
around the source using the SWD in Eq. (1) and the vector
ĉ of estimated spherical wave coefficients (ĉmn). Further-
more, the far-field directivity of the source can be recon-
structed using the following formula [2]

D∞(θ, ϕ) =

N∑
n=0

n∑
m=−n

ĉmnj
(n+1)Yn(θ, ϕ). (4)

2.1.3 Cross-validation procedure

In Refs. [1, 4], the choice of a SWD truncation order N
is done by hand. Ref. [7] proposes a method based on a
far-field assumption in order to mitigate the instability of
the inverse problem in Eq. (2) when high-order compo-
nents are included in the spherical wave basis. In practice,
this method is limited to the lower frequency range where
source-sensor distances are small behind the wavelength.

Ref. [8] proposes to use a cross-validation framework
that allows to define the truncation order optimally. The
set E of microphones is partitioned into S random dis-
joint validation subsets (Es)s∈[0,...,S−1]. For each vali-
dation subset Es, the HELS method is used to estimate
a vector of SWD coefficients ĉs given measurement data
in the complement set of points E − Es. The pressure is
then reconstructed on the validation points in Es using the
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Figure 1: Microphone array used in the study.

coefficients ĉs. The partitioning of E into disjoint valida-
tion subsets ensures that an unique estimate p̂(rq, θq, ϕq)
is available for each measurement point (rq, θq, ϕq). A
RMS cross-validation error relative to the RMS pressure
measured on the array can then be computed

LCV =

√∑Q−1
q=0 |p(rq, θq, ϕq)− p̂(rq, θq, ϕq)|2√∑Q−1

q=0 |p(rq, θq, ϕq)|2
. (5)

2.2 Experimental setup

2.2.1 Microphone array

The 3.6m-radius quasi-spherical array of 588 micro-
phones shown in Fig. 1 is deployed in the anechoic cham-
ber of Laboratoire de Mécanique et d’Acoustique (Mar-
seille, France). The microphone positions are retrieved
using the procedure described in Ref. [10].

2.2.2 Measurements on a reference controlled source

For validation purposes, measurements are first performed
on a controlled source. The sound source used in the ex-
periment is a 3.5 cm-radius speaker mounted on a 8.5 cm
3D-printed spherical baffle. This sound source is assumed
to present similar directivity characteristics as a spheri-
cal cap of aperture 4 cm on a rigid baffle of radius 8.5 cm.
The field radiated by the spherical cap admits an analytical
spherical wave decomposition (see e.g. Ref. [9]), which
allows to compute reference fields for a qualitative com-
parison with the fields reconstructed in the experiment.

The signal sent to the source is a Synchronized Swept
Sine [11] of duration 30 s spanning the frequency range
100Hz to 10 000Hz. The Megamicros acquisition system
described in Ref. [12] is used to acquire the signals mea-
sured by the array, with a sampling frequency of 50 kHz.

The procedure from Ref. [11] is used to isolate the linear
component of the source’s frequency response recorded
by each microphone. These responses are normalized by
the linear response measured by a frontal microphone. At
a given frequency, the normalized linear response are used
to construct the input vector in the HELS method.

2.2.3 Singer recordings

First applications of the HELS method to the reconstruc-
tion of the directivity of human voice are performed. An
amateur singer is asked to utter the French vowel /a/,
singing a glissando of 30 s spanning approximately two
octaves. The singer is asked to keep their mouth approx-
imately at the center of the sphere, and their posture is
visually controlled during the utterance using a camera.

Power and cross spectral densities of the signals
recorded by the MEMS microphones are computed using
Welch’s method [13] with a 20ms long Hann window and
80% overlap. Transfer functions between the reference
MEMS microphone placed directly in front of the speaker
and the remaining MEMS microphones are used as inputs
for the HELS method.

3. CHOICE OF A TRUNCATION ORDER

3.1 Evolution of the cross-validation error with N

Figure 2 shows the evolution of the cross-validation er-
ror LCV with the truncation order at three different fre-
quencies, for the controlled source and the singer. At all
frequencies, LCV is high at low orders and starts by de-
creasing to reach a low error plateau. At a mid-range fre-
quency of 500Hz, it keeps decreasing at a low rate on the
whole range of truncation order represented, presenting a
minimal value at N = 12 for both sources. At 2 kHz,
LCV slightly increases at higher orders for both sources,
presenting a global minimum (5 for the controlled source,
9 − 11 for the singer). At 4 kHz, the cross-validation er-
ror for the controlled source is minimal at 9 − 10, while
the cross-validation error for the singer does not reach its
minimal value before N = 12.

3.2 Condition number of the inverse problem

The condition number κ = ||H||2||H−1||2 (where ||.||2 is
the ℓ2 matrix norm) of a matrix H gives an indication of
the well-posedness of the associated inverse problem [14].
High condition numbers are associated to unstable sys-
tems with a low robustness to uncertainties. Figure 3
shows the evolution of the condition number of the HELS
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Figure 2: Evolution of the cross-validation error
with the truncation order at three different frequen-
cies, for the controlled source and the singer.
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Figure 3: Evolution of the condition number κ of
the sensing matrix H with the truncation number N
at 500Hz (solid purple curve), and 2 (dashed blue
curve) and 4 kHz (dotted green curve).

problem’s sensing matrix H with the truncation order N
at 500Hz, 2 kHz, and 4 kHz. At all the considered fre-
quencies, the condition number curves are close to iden-
tical. The condition number monotonically increase with
N . At orders higher than 9, the condition number it a
higher increase rate than at lower orders. Therefore, using
truncation orders higher than 10 might lead to an unstable
inversion of Eq. (2).

3.3 Choice of an optimal truncation order

In order to ensure the well-posedness of the inverse prob-
lem in Eq. (2) and to improve the robustness of the HELS
method to experimental uncertainties, the truncation order
is chosen in terms of both the cross-validation error and
the condition number κ. First of all, the truncation order
is sought for in the range where the condition number has
not started to critically increase, which corresponds to the
range I = [0, . . . , 9] in the present study case. At a given
frequency, we propose to define the optimal truncation or-
der as the one which yields the lowest condition number κ
under the constraint that the cross-validation error is close
enough to the minimal achievable cross-validation error
Lmin = argminN∈I LCV(N). This can be stated as

Nopt = argmin
N∈I

κ(N)

s.t. |LCV(N)− Lmin| ≤ ϵ, (6)

where ϵ is the maximal acceptable distance to the minimal
error. In the remaining of this study, ϵ = 0.01.

4468



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

100 400 1000 4000 8000
Frequency (Hz)

0

2

4

6

8

10

Nopt 

controlled source
singer

Figure 4: Frequency evolution of the optimal trun-
cation order defined in Eq. (6) for the measurements
on the controlled source and on the singer.

3.4 Evolution of Nopt with frequency

Figure 4 shows the frequency evolution of the optimal
truncation order with frequency for the two sources of in-
terest. For the singer, a truncation order N = 4 is ob-
tained at 200Hz, and the truncation order presents an in-
creasing trend with increasing frequency up to approxi-
mately 2 kHz, where it reaches the maximal order N = 9.
At very high frequency above 6 kHz, the optimal trun-
cation order for the singer drops. This is likely due to
the HELS method being too restricted in order to repro-
duce the complexity of the sound field. In the 100Hz to
600Hz frequency range, the optimal truncation order for
the controlled source is critically high (approximately 6
to 7). This indicates a high complexity of the radiated
field in this frequency range. This complexity can be ex-
plained by a coupling between the air volume inside the
spherical baffle and the tube used to connect the source to
its support, despite efforts to dampen the resonance of the
mast filling it with foam, and to reduce the acoustic leaks.
At frequency higher than 600Hz, the optimal truncation
order for the controlled source drops to 3, and increases
monotonically with frequency, reaching N = 9 at 5 kHz.
In this same frequency range, the optimal truncation order
obtained for the controlled source is lower than the one
obtained for the singer, indicating a higher complexity of
the field radiated by the singer.

4. RECONSTRUCTED FIELDS

4.1 Controlled source : Visualization of the array’s
order limitation

Figure 5 (a) shows the theoretical FFD of the spherical
cap source model at 500Hz. At such a low frequency,
a wide main lobe is observed in front of the source, and
the FFD function presents a rear lobe approximately 1 dB
lower than the frontal lobe.
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Figure 5: (a) : Magnitude of the theoretical 500Hz
FFD function of the spherical cap. (b), (c) : magni-
tude of the 500Hz FFD reconstructed experimentally
for the controlled source with the HELS method, us-
ing truncation orders of 5 and 10. In a particular di-
rection, the color and distance to the origin indicate
the radiated power. The x and z axis indicated in (a)
correspond to the frontal and upward directions.
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The reconstruction of the controlled source’s FFD at
500Hz using respective truncation orders of 5 and 10 are
shown in Figs. 5 (b) and (c). The FFD reconstruction us-
ing N = 5 presents similar frontal and rear lobes as the
theoretical FFD, and an upper lobe of similar amplitude
as the rear lobe. This upper lobe might result from the
diffraction of the source’s support. The reconstruction us-
ing the truncation order N = 10 presents high rate spatial
fluctuation that are unlikely to be radiated in the far-field
considering the large wavelength (approximately 69 cm)
at this low frequency. These fluctuations are likely due to
the experimental uncertainties impacting the reconstruc-
tion at a truncation order where the condition number is
relatively high, motivating the use of a truncation order
lower or equal to 9.

4.2 Reconstructed human voice directivity

4.2.1 Horizontal plane

Figure 6 (a) shows the frequency evolution of the singer’s
reconstructed FFD in the horizontal plane. Below 600Hz,
the horizontal directivity presents a wide frontal lobe. On
the entire frequency range, the FFD function in the hor-
izontal plane presents a rear lobe of decreasing radiated
power and angular width with increasing frequency. At
frequency higher than 500Hz, strong side lobes appear
in the FFD function. These side lobes tend to decrease
in terms of both width and radiated power, and to di-
verge from the center with increasing frequency. New side
lobes with a similar behaviour appear at around 1.5 kHz.
In the frequency ranges 600Hz to 900Hz and 1500Hz
to 2000Hz, the side lobes have a higher amplitude than
the frontal lobe, and the main radiation direction in the
horizontal plane is not frontal. In the respective ranges
1000Hz to 1500Hz and 2000Hz to 4500Hz, the main
radiation direction in the horizontal plane is frontal again.
Furthermore, the frontal lobe’s width in the range 1000Hz
to 1500Hz is narrower than in the range 200Hz to 600Hz
and wider than in the range 2000Hz to 4500Hz.

In Ref. [3], Brandner et al. measure the directivity of
a classical singer asked to sing a glissando on the German
vowel /a/ using an horizontal and a vertical arc of micro-
phones of angular resolution 11.25◦. The main character-
istics of the FFD function in the horizontal plane seen in
Figure 6 (a) and mentioned in the last paragraph (frontal
maximum radiation direction at most frequency, presence
of diverging and narrowing side lobes, maximum radia-
tion direction on the sides in some frequency regions, de-
caying and narrowing rear lobe) can be observed in their
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Figure 6: Frequency-angle representations of the re-
constructed singer’s FFD function in the horizontal
(a) and sagittal (b) planes. The FFD function is nor-
malized by the maximal value at each frequency.

results (Figs. 13 (a) and (c) in the corresponding study).
However, from about 3 kHz, the FFD function in the hor-
izontal plane shown in Figure 6 (a) presents unexpected
narrow lobes of constant angles with varying frequency.
At this frequency, the optimal truncation order for the
singer (see Fig. 4) has reached N = 9, while the spa-
tial complexity of the radiated field is likely to increase.
This result highlights the need for microphone arrays of
very high orders when studying complex sound sources
such as human singers or musical instruments in the high
frequency range.

4.2.2 Sagittal plane

Figure 6 (b) shows the frequency evolution of the singer’s
reconstructed FFD in the horizontal plane. At very low
frequency (200Hz), a strong lobe appears in front (sagittal
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angle θs =0 rad) of the source. At respectively approxi-
mately 800Hz and 1500Hz, the FFD function in the ver-
tical direction presents upward-directed lobes (θs ≈ π/4
rad). The directions and widths of these lobes decrease
with frequency. A striking consequence of these observa-
tions, also observed in the measurements by Brandner et
al. [3], is that the main radiation direction in the vertical
plane is horizontal only at some isolated frequencies.

This last result is the topic of a study by Pörschmann
et al. [15], who estimate the vertical maximum radiation
direction of the field radiated by human speakers using
an order 4 surrounding spherical array of microphones.
Note that the resolution of the FFDs shown in Ref. [15]
(Fig. 1 and 2) is not sufficient to observe all the charac-
teristics mentioned in the last paragraph, motivating again
the need for very high arrays of microphones when ana-
lyzing the directivity of natural sources.

4.2.3 Examples of 3D directivities

Figure 7 shows balloon plots of the reconstructed singer’s
FFD function at three different frequencies. At a midrange
frequency of 500Hz (Figure 7 (a)), the FFD presents a
downward-directed frontal main lobe, a weaker upward-
directed rear lobe, and a third downward-directed rear
lobe. At higher frequencies (1.9 and 2.3 kHz in Fig-
ure 7 (b) and (c)), the FFD function presents secondary
lobes that are neither contained in the horizontal or in the
vertical plane. This illustrates the limitation of studying
the directivity of sound sources by performing 2D mea-
surements.

5. CONCLUSIONS

This work presented an experimental validation of the
HELS method used for the directivity reconstruction of
sound sources. A criterion was proposed to choose an op-
timal truncation order for the spherical wave decomposi-
tion of the sound field based on considerations on both a
cross-validation error metric and on the condition number
of the HELS inverse problem.

A quasi-spherical array of approximately 600 micro-
phones and diameter 3.6m was used to measure the field
radiated by a reference controlled source and a human
singer. At midrange frequency (below 600Hz), the high
spatial complexity of the controlled source put into light
the order limitation of the array. At higher frequency,
the optimal truncation order for the controlled source was
lower than the one obtained for the singer. This is in ac-
cordance with the expected higher spatial complexity of
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Figure 7: 3D representations of the magnitude of the
reconstructed singer’s FFD at three different frequen-
cies. In a particular direction, the distance to the ori-
gin indicates the radiated power. To ease readability,
a color scale is added to the representation, and iso-
power circles are added to the representation. The x
(resp. y, z) axis indicated in (a) correspond to the
frontal (resp. left, upward) direction. The FFD is
normalized by its maximal value at each frequency.
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the sound field radiated by the singer.
The reconstructed FFD function of the human singer

presented a hardly explainable behaviour at high fre-
quency (above approximately 2.5 kHz) where the optimal
truncation order is higher than 9. To the knowledge of the
author, the maximal spherical harmonic order of the syn-
chronous spherical arrays typically used in the literature
for directivity interpolation is 4 to 5 (see, e.g., Ref. [15]).
This observation demonstrates the resolution limitation
of previously published studies at high frequency. Fi-
nally, 2D and 3D examples of reconstructed directivity
for the singer presented a good agreement with recently
published results on human voice directivity, which were
either limited to the horizontal and vertical plane, or per-
formed with a lower order spherical array.
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