
11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

STABILITY INVESTIGATIONS OF SOLID WALL IMMERSED
BOUNDARY SCHEMES FOR THE LINEARIZED EULER EQUATIONS IN

MULTIDIMENSIONS

Izsak, Marian G. S.1∗ Kaltenbach, Hans-Jakob1

1 Flow Control and Aeroacoustics Group, School of Engineering and Design,
Technische Universität München, Boltzmannstraße 15, 85748 Garching, Germany

ABSTRACT

We investigate the numerical stability of our recently
developed multidimensional sharp-interface immersed
boundary treatment for equidistant Cartesian grids to
solve the linearized Euler equations (LEE) for scattering
problems and the linearized perturbed compressible equa-
tions (LPCE) for flow-induced aeroacoustic simulations
in multidimensions. Instead of employing common ghost
point techniques, we recently proposed designing modi-
fied finite-difference stencils for first derivatives near the
solid wall that directly include the imposition of multi-
ple boundary constraints, including a zero-vorticity con-
straint. We employ the matrix method, including the
method-of-lines approach, to assess the numerical stabil-
ity of our stencil design. We determine eigenvalues of the
semi-discretized system of difference equations, including
immersed obstacles, to identify the underlying parameters
most contributing to the stability of our multidimensional
boundary treatment. Conclusively, using a hybrid hydro-
dynamic/acoustic splitting approach, we simulate the clas-
sical aeolian sound produced by the low-Reynolds flow
around a circular cylinder resolved by eight grid nodes
per diameter in 2D via the LPCE without spatial filtering
of the numerical solution.
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1. INTRODUCTION

Since the pioneering work of Courant, Friedrichs, and
Lewy (1928) on elliptic boundary and hyperbolic initial
value problems [1], various techniques have emerged to
assess the numerical stability of partial differential equa-
tion systems. Lax & Richtmyer [2] established that under
certain conditions, stability ensures convergence.

Von Neumann’s Fourier analysis [3] for finite differ-
ence equations on unbounded domains provided a practi-
cal stability framework by deriving eigenvalues from an-
alytical dispersion relations. Vichnevetsky [4] further ex-
plored this approach. For bounded domains, Gustafsson,
Kreiss & Sundström [5] (GKS theory) developed a general
stability framework for finite difference approximations.

An alternative approach is the matrix method
(Hirsch [6]), based on the method of lines [7–9], which
examines the eigenvalues of spatially discretized prob-
lems using the Kreiss matrix theorem [10]. This method
has been applied by Osher [11], Strikwerda [12], Sescu et
al. [13], and Lele [14] to study finite-difference schemes
for the linear advection equation.

Since the linear advection equation does not cap-
ture wave reflections at solid walls, the linearized Eu-
ler equations (LEE) must be studied for the stabil-
ity analysis of boundary discretizations. Tam & Kur-
batskii [15] analyzed the stability of their ghost-point-
based immersed-boundary method for the LEE, improv-
ing stability through wavenumber-optimized extrapola-
tion schemes in 1D. In our recent work [16], we adapted
their method to prove the unconditional stability of a novel
1D immersed-boundary formulation, demonstrating that
stability depends on the number of enforced boundary
constraints.
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High-order schemes are typically designed for ac-
curacy and error reduction, with stability often ensured
through spatial filtering rather than inherent stencil de-
sign. Existing multidimensional solid-wall treatments rely
on ghost-point methods [17–21], yet their stability prop-
erties remain largely unexplored. Our recent formula-
tion takes a different approach: instead of using ghost
points outside the domain, we directly enforce bound-
ary constraints while computing first derivatives near the
boundary. These constraints are derived similarly to
those proposed by Goodrich & Hagstrom [22] for wall-
normal derivatives of pressure and velocity. Since acous-
tic flows are largely irrotational, we also incorporate a
zero-vorticity condition [22] into the stencil design.

Although this approach produces highly accurate re-
sults, minor instabilities sometimes require additional sta-
bilization. To address this, we demonstrate the stabilizing
effect of radiation boundaries on the solid-wall treatment
for exterior acoustical problems.

1.1 Goals and outline of the paper

So far, numerical stability assessments of immersed-
boundary schemes have been limited to 1D. For multidi-
mensional schemes, including our approach, no system-
atic investigations exist regarding potential numerical in-
stabilities. To better understand how to control their ex-
tent, we aim to analyze the stability of solid-wall boundary
schemes for the multidimensional LEE. Specifically, we
seek to evaluate the stability properties of our multidimen-
sional immersed-boundary method [16]. Since Tam’s [15]
truncated matrix method in 1D does not easily extend to
multiple dimensions, we adopt the matrix method to study
multidimensional problems.

The paper is structured as follows: Section 2 presents
the governing equations - the linearized Euler equations
(LEE) - along with the relevant solid-wall boundary con-
ditions. Section 3 introduces our multidimensional cut-
cell method, detailing its stencil design using a 2D cylin-
der as an example. Section 4 outlines the matrix method
and its eigenvalue analysis for the multidimensional LEE,
incorporating non-reflective boundary conditions. Sec-
tion 5 examines eigenvalues of two boundary schemes to
identify stable discretizations around a 2D cylinder, fol-
lowed by aeroacoustic benchmarks: planar wave scat-
tering and aeolian sound emission from low-Reynolds-
number flow around a 2D cylinder. Finally, Section 6
summarizes key findings.

2. LINEARIZED EULER EQUATIONS (LEE)

The linearized Euler equations (LEE) in nondimensional
form for the isentropic case with a uniform background
flow [23] are given in index notation as

∂vi
∂t

+ MaVj
∂vi
∂xj

+
∂p

∂xi
= 0 ,

∂p

∂t
+ MaVj

∂p

∂xj
+

∂vj
∂xj

= 0 ,

(1a)

(1b)

where vi and p are the perturbed velocity components and
pressure, normalized by the speed of sound c0 and ρ0 c

2
0,

respectively. Spatial and temporal variables xi and t are
normalized by a reference length L0 and L0/c0. Here,
the background velocity components Vi are scaled by a
reference velocity V0 (as used for the determination of a
Reynolds number), leading to the Mach number Ma =
V0/c0 as an additional scaling parameter.

The LEE (1) describe transient, non-dispersive, and
non-dissipative wave propagation of a fluid featuring a
fixed nondimensional speed of sound equal to one. In the
absence of background flow (Ma = 0), the wave solutions
satisfy an irrotational motion with vanishing vorticity.

2.1 Solid-Wall Boundary Conditions

When solid obstacles are present, wave scattering and re-
flection must also be accounted for. The fundamental
physical boundary condition at a solid wall is the imper-
meability (free-slip) condition:

vi ni = 0 , (2)

which ensures that no fluid can penetrate the wall in its
normal direction ni.

Previously, we [16] derived an infinite set of multi-
dimensional boundary constraint equations for arbitrary
wall locations and orientations in M -dimensional space.
These constraints are applied at so-called surface enforce-
ment points (SEP) of the discretized solid wall, extend-
ing the work of Goodrich & Hagstrom [22]. By project-
ing the momentum balance equations (1a) on the wall-
normal direction ni, enforcing the impermeability condi-
tion (2), and repeating this process for the mass balance
equation (1b), the infinite set of conditions

vi ni = 0 ,
∂p

∂xi
ni = 0 ,

∂2vj
∂xj ∂xi

ni = 0 ,

∂3p

∂x2
j ∂xi

ni = 0 ,
∂4vk

∂xk ∂x2
j ∂xi

ni = 0 , . . . (3)
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is obtained. These constraints hold at any nodal or intern-
odal position as illustrated in Fig. 1. The second constraint
in (3)

∂p

∂xi
ni = 0 , (4)

represents the vanishing wall-normal pressure gradient,
which supports the enforcement of the impermeability
condition. When the wall is located on a grid node, con-
ditions (2) and (4) are equivalent. This has led several
authors [17, 18, 20] to rely solely on the pressure gra-
dient condition for implementing solid walls. However,
discretely enforcing the zero pressure gradient condition
at an internodal position does not necessarily satisfy the
impermeability condition at that same location. To im-
prove accuracy, we always incorporate at least the first
two physical boundary conditions (2) and (4) in our stencil
design. The higher-order constraints are employed to en-
hance the numerical stability of the boundary discretiza-
tion near solid walls.

When including a nonzero uniform background flow,
the linearized Euler equations (LEE) (1) inherently con-
tain perturbed vortical modes that are not damped due to
their inviscid formulation. For nonuniform background
flow, the solution of the LEE may become unstable and di-
verge when hydrodynamic instabilities arise [24]. In con-
trast, the LEE without background flow (Ma = 0) do not
support the generation of perturbed vorticity [22], which
is defined as the curl of the perturbed velocity vk

ωi = ϵijk
∂vk
∂xj

= 0 ,

or ω3 =
∂v2
∂x1

− ∂v1
∂x2

= 0 specifically in 2D .

(5)

(6)

3. SPATIAL DISCRETIZATION APPROACH

We aim to solve the LEE (1) using finite-difference meth-
ods on Cartesian grids. Employing high-order explicit
central stencils with optimized coefficients as in Tam &
Webb (DRP) [23] or Bogey & Bailly [25] throughout the
entire domain for approximating first-order spatial deriva-
tives, as in eq. (7), ensures numerical stability and ac-
curacy. However, the stability of such finite-difference
methods is compromised when the consistent use of cen-
tral stencils is disrupted - such as when biased stencils
of the same order are employed near embedded obstacles
or global domain boundaries. While reducing the stencil
order at boundaries improves numerical stability, it also
leads to a significant loss of accuracy [26].

wall

BPi,j

R/h
∗∗
∗

ζ/h

nSEP1
k,(i,j)

nSEP2
k,(i,j)

nSEP3
k,(i,j)

i (x1)

j (x2)h

Figure 1: Sketch of the boundary discretization for
modified stencils at boundary points for a quarter of
a circular cylinder with a diameter of 8h when using
a 7-point stencil in the domain’s interior. bound-
ary region, point in fluid region (FP), point in
boundary region (BP); every BP is a FP as well,

surface enforcement point (SEP), ∗ volume en-
forcement point (VEP), point in solid region.

To retain accuracy near boundaries, we previously
introduced a consistent and stable immersed-boundary
method that constructs modified discretizations near solid
walls [16] by incorporating a tailored subset of boundary
constraints (Fig. 1). This approach enables the stable so-
lution of the linearized Euler equations in 1D without the
need for spatial filters. We further demonstrated its appli-
cability to higher dimensions through numerical cases in-
volving wave scattering at arbitrarily immersed cylinders
with various resolutions. However, in multidimensional
settings, minor instabilities in the boundary discretization
necessitated the use of modified filter schemes, applying
the same principles as the modified derivative stencils.

In this study, we improve the stability of the bound-
ary discretization to eliminate the need for spatial filtering.
The following sections revisit the boundary-point method
(BPM) introduced in [16] and demonstrate its application
to the multidimensional LEE and LPCE, including cases
with inhomogeneous background flow.
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3.1 Multidimensional High-Accuracy Stencil Design
Near Immersed Boundaries

We revisit the general procedure for designing Hermite-
based finite-difference stencils that incorporate a known
subset of boundary constraints derived from the LEE, as
given in eqs. (3) and (5). The interaction of acoustic waves
with solid obstacles involves multiple physical effects,
such as reflection, refraction, and scattering. To mini-
mize numerical discretization errors, we employ Carte-
sian grids with an equidistant, nondimensional grid spac-
ing h near the boundary. From now on, we express spa-
tial locations using nondimensional indices i = x1/h and
j = x2/h, where integer values indicate nodal positions
and internodal positions are described by real-valued in-
dices. We use standard central n’th-order finite-difference
stencils, which involve n + 1 nodes in the domain’s inte-
rior and have a truncation error of O(hn). For example, a
seven-point stencil approximates the first derivative at an
interior node i, j in 2D along the x1-direction using the
discretization operator dϕ

1 :

∂ϕ

∂x1

∣∣∣∣
i,j

≡ 1

h
dϕ
1

∣∣∣
i,j

≈ 1

h

3∑
m=−3

amϕi+m,j (7)

where the finite difference coefficients are am =
(−1/60, 3/20,−3/4, 0, 3/4,−3/20, 1/60). The symme-
try of central stencils eliminates amplitude errors, while
dispersive errors - associated with phase- and group-
velocity inaccuracies - can be mitigated for a prescribed
spectral range by reducing the stencil’s order, as demon-
strated in DRP (Dispersion-Relation-Preserving) schemes
by Tam & Webb [23].

Consider a circular cylinder with diameter D im-
mersed in a uniform 2D Cartesian grid with mesh width
h, as depicted in Fig. 1. The nondimensional diameter, de-
fined as PPD = D/h, is set to 8 PPD. We define a ’bound-
ary region’ extending approximately n/2 grid points per-
pendicularly from the obstacle into the domain. The set
of all grid points within this shaded boundary region is
referred to as boundary points (BP), where modifications
to the discretization of the balance equations are required.
Finite-difference approximations at all other grid points
outside this boundary region remain unchanged and can
be computed using the standard weighted sum in eq. (7).

The solid wall forms an arbitrary closed curve in 2D
(or a closed surface in 3D), mostly meandering between
the grid nodes i, j. Thus, we must discretize the boundary
by representing it as a finite set of line segments (surface

elements) connected by points, which we define as sur-
face enforcement points (SEP). Each BP is associated with
a specific set of SEPs, which are defined by their coordi-
nates xSEP

k and corresponding wall-normal directions nSEP
k .

Boundary conditions are enforced at these discrete SEPs.
The stability of our immersed boundary method critically
depends on selecting an appropriate SEP configuration for
each BP. In Fig. 1, we illustrate an example where three
SEPs are spaced approximately 1.5 grid points apart. The
shortest nondimensional distance between these SEPs de-
noted ζ/h, plays a key role in constructing robust and
accurate immersed-boundary schemes, as demonstrated
through stability analyses and numerical tests in 2D.

Findings from the 1D immersed-boundary
schemes [16] can be extended to multidimensional
cases. In 1D, the number of boundary constraints
determined the stability of the discretization. However,
multidimensional boundary treatments are more complex.
Nonetheless, incorporating a subset of the infinite set of
multidimensional boundary constraints from eq. (3) is
essential to maintain consistency with the 1D approach.
While these constraints hold in the continuous analytical
formulation, their discrete enforcement requires careful
consideration. Instead of using ghost points, our approach
integrates boundary constraints directly into the stencil
formulation, similar to compact schemes (Lele [14]) or
Hermitian finite-difference schemes (Goodrich [27]).
Rather than computing derivatives, including ghost
values, our stencils approximate derivatives while
simultaneously enforcing the incorporated boundary
constraints. In 1D, we demonstrated that our approach is
mathematically equivalent to ghost-point formulations in
certain cases, precisely when the number of constraints
matches the number of unique ghost points. However,
in multidimensional settings, the number of usable ghost
points in convex regions of the surface enclosing an
obstacle is limited, making our approach more rigorous.

We start with a general 2D Taylor series expansion
for an arbitrary r’th-order derivative of a variable ϕ about
a node i, j along the xq- and xp-directions

∂rϕ

∂xs
q∂x

r−s
p

∣∣∣∣∣
m,n

=
∂rϕ

∂xs
q∂x

r−s
p

∣∣∣∣∣
i,j

+
h

1!

∂r+1ϕ

∂xs
q∂x

r−s
p ∂xk

∣∣∣∣∣
i,j

∆xk

h

+
h2

2!

∂r+2ϕ

∂xs
q∂x

r−s
p ∂xk∂xl

∣∣∣∣∣
i,j

∆xk

h

∆xl

h
+ · · · (8)
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where ∆x1/h = m− i and ∆x2/h = n− j, and the side
constraint s ≤ r applies. Extending the formulation to 3D
requires analogous Taylor series expansions in 3D.

A discrete Hermite-based function approximation can
be constructed using a weighted linear combination of d
arbitrary r’th-order derivatives (8) reading

αd

hr ∂rϕ

∂xs
q∂x

r−s
p

∣∣∣∣∣
m,n


d

≈ 0 . (9)

The coefficients αd ensure that the stencil preserves
Taylor-series correlations up to a desired order of h. For
r = 0, expression (9) includes the (known) nodal values,
whereas one or several first derivatives (r = 1) are the un-
knowns to be approximated. This formulation allows us
to enforce boundary conditions naturally within the finite-
difference framework, leading to accurate and stable nu-
merical schemes.

To demonstrate the practical application of the pre-
vious derivations, consider the explicit approximation of
the perturbation pressure gradient ∂p/∂xi at a boundary
point denoted as BPi,j . Our goal is to extend the seven-
point central discretization from the interior while main-
taining accuracy near the boundary. By defining a cir-
cular subset of 19 fluid points (FPs) with a nondimen-
sional radius R/h = 3, we formulate an approximation
for the first derivative ∂p/∂x1 (weighted for convenience
by α0 = −1), using the Hermitian ansatz

h
∂p

∂x1

∣∣∣∣
BPi,j

≈
19∑
d=1

αd p|FPd
. (10)

To incorporate boundary conditions into our stencil for-
mulation, three surface-enforcement points (SEPs) are in-
troduced on the boundary (ref. Fig. 1). There, the first-
order boundary constraint ∂p/∂xi ni = 0 is enforced,
yielding

∂p

∂x1

∣∣∣∣
BPi,j

≈ 1

h

19∑
d=1

αd p|FPd
+

22∑
d=20

αd
∂p

∂xi
ni

∣∣∣∣
SEPd−19

.

(11)

Further constraint equations from eq. (3) can be included
straightforwardly.

In this example, the final stencil’s dimension is 22,
requiring a linear system of equations to determine αd.
Given the Taylor-series expansion constraints, e.g., for

6th-order accuracy, 28 terms need to be satisfied, an
overdetermined linear system of equations structured as
Acd αd = bc can be formulated. Here, Acd is a non-square
28× 22 matrix, αd is the 22× 1 coefficient vector, and bc
is a 28× 1 right-hand side vector.

It turns out that singular value decomposition (SVD)
is a suitable approach for finding an approximative solu-
tion, ensuring condition numbers ≤ 108. The resulting
coefficients αd, determining the modified pressure deriva-
tive at the BPi,j , optimize stability and accuracy. The
method is efficiently implemented when the coefficients
αd are computed once in a preprocessing step and stored
for repeated usage during the time-stepping procedure.

For vectorial equations such as the momentum bal-
ance (1a), boundary conditions like the free-slip condition
vi ni = 0 must be incorporated into the velocity stencils
requiring analogous coupled formulations for the velocity
components. Further modification and improvement are
achieved by enforcing zero vorticity at SEPs or additional
VEPs.

4. MULTIDIMENSIONAL STABILITY ANALYSIS
VIA THE MATRIX METHOD

The stability of discretized multidimensional linearized
Euler equations (LEE) is crucial for obtaining convergent
numerical solutions in aeroacoustics. Here, we consider
the nondimensional LEE with zero mean flow (Ma = 0).
We assess the stability of the proposed immersed bound-
ary formulation using the matrix method [6], which in-
volves analyzing the eigenvalues of the discretized sys-
tem. Given the complexity of multidimensional boundary
conditions, we do not attempt a general proof of stability
but instead identify key parameters influencing stability.

A Cartesian grid in 2D space including M1 ×M2 =
M nodes is considered. Since acoustic waves radiate
outward at the global boundaries non-reflective boundary
conditions are applied. Traditional methods include char-
acteristic boundary conditions [28], perfectly matched
layers (PML) [29], and sponge zones (buffer layers) [30].
Here, we focus on sponge zones that modify the govern-
ing equations within a specific region and, thus, damp the
numerical solution before reaching the global boundary.

Following Israeli and Orszag [30], we introduce a
damping term in the transport equation, e.g., ∂p/∂t +
∂vi/∂xi = −κ/h (p − p0) where κ is a spatially varying
damping factor, commonly defined as κ(x/h) = κ0(1 −
x/(hNbuffer))

β and p0 is an arbitrary target value. Here,
κ0 is the maximum damping amplitude, β controls the
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damping profile, and Nbuffer is the number of buffer zone
nodes. The central stencil width is successively reduced
towards the global boundary.

Using the method-of-lines (MOL) [7], we discretize
spatial derivatives while keeping time continuous to fo-
cus on spatial discretization effects. Applying a nodal
time-harmonic ansatz ϕl(t) = ϕ̂l exp(−i ω̃ t) to the semi-
discretized LEE leads to the frequency-space form

[(κ− iω) v̂k + d p
k p̂]l = 0 ,

[(κ− iω) p̂+ d vk
k v̂k]l = 0 .

(12a)
(12b)

for every node l = 1, . . . ,M with the abbreviated eigen-
value ω = ω̃ h. In eq. (12), the index k = 1, 2 in 2D
and dϕ

k denotes the discretization operator introduced in
eq. (7) respectively its modifications at boundary points.

The unknown amplitudes for the pressure p̂ and
the velocity components v̂i are arranged into a 3M -
dimensional vector Vk ≡ (p̂M v̂1,M v̂2,M ). This results
in the eigenvalue problem

(ω δmk −Dmk)︸ ︷︷ ︸
=Amk(ω)

Vk = 0 , (13)

with the identity matrix represented by the Kronecker
delta δmk and the 3M × 3M discretization matrix

Dmk = −i

 κ|l d v1
1 |l d v2

2 |l
d p
1 |l κ|l 0

d p
2 |l 0 κ|l

 (14)

comprising M × M submatrices for spatial deriva-
tives dϕ

i |l , including the modified boundary stencils and
nonzero damping terms κ|l along the diagonal. Since our
scheme avoids ghost points, boundary coefficients like
interior stencils are directly integrated into the matrix.
Oblique cut-cell boundaries increase the matrix density
due to the coupling of velocity components via the im-
permeability condition (2) at SEPs and the zero-vorticity
constraint (6) at SEPs and VEPs.

Solving for the eigenvalues ω from det(Amk(ω)) = 0
yields the stability condition - the spatial discretization is
unconditionally stable if ℑ{ω} ≤ 0 for all eigenvalues.

5. COMPUTATIONAL RESULTS

We demonstrate the application of the stability analysis
tool (Section 4) to optimize boundary stencil parameters.

As a test case, a circular cylinder immersed in a regu-
lar Cartesian grid is analyzed, assessing the spatial dis-
cretization for the LEE. Further, we apply our compu-
tational schemes to two benchmark problems. First, the
scattering of a planar wave at the embedded cylinder and
secondly, the flow-induced noise from a low-Reynolds
flow around the cylinder, solving the LPCE from Seo &
Moon [31] without applying any spatial filtering tech-
niques. These cases highlight two key aspects: (1) our im-
mersed boundary scheme yields high accuracy, and (2) our
stability analysis, formulated for the LEE without back-
ground flow, reliably assesses the stability, avoiding the
necessity of using spatial filters.

5.1 Investigating the stability

We analyze the stability of a circular cylinder with a di-
ameter 8h by setting up a 48 × 48 computational domain
with an equidistant mesh width h = 1. The cylinder’s
midpoint location is varied around the domain center as
xi/h + ηi = (24 + η1, 24 + η2) in order to generate a
variety of cut-cell configurations. The boundary stencils
modify the discretization at 96 surrounding BPs for ηi = 0
(ref. Fig. 1) and ηi = (0.5 , 0.5) respectively, and at 92
BPs for ηi = (0.99 , 0.99). The nondimensional radius
of the stencil formulation is R/h = 3, i.e., nodes within
this radius around each BP (but still in the fluid region)
contribute to the first-order derivative computations. To
enforce non-reflective boundary conditions, sponge zones
extend five nodes (Nbuffer = 5) into the domain from
each global boundary. The damping parameters are set
to κ0 = 1 and β = 3, with homogeneous target values
p0 = vi,0 = 0.

Due to space limitations, an extensive survey of
boundary formulations is not feasible, so only two con-
figurations are investigated. The first and most straight-
forward approach incorporates a single enforcement point
(SEP) per BP. The SEP is determined as the intersection
of a straight line connecting the BP to the cylinder’s mid-
point with the cylinder’s surface. At this SEP, only the im-
permeability condition (2) and the vanishing wall-normal
pressure gradient (4) are discretely enforced. This bound-
ary scheme is referred to as ’bs1’.

The second configuration, denoted as ’bs2’, intro-
duces three SEPs per BP, as illustrated in Fig. 1. The mid-
dle SEP is determined as in ’bs1’, while the neighboring
SEPs are positioned by rotating the middle SEP approx-
imately ±21.5◦ around the cylinder’s midpoint. In this
case, the first three constraint equations from (3) are en-
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forced for vi and p. Additionally, the zero-vorticity con-
straint (6) is applied at all SEPs. The enforcement of the
zero-vorticity condition ω3 = 0 at VEPs depends on the
displacement vector ηi. For ηi = 0, the condition is en-
forced at non-diagonally located fluid points (FPs) within
a radius R/h ≤ 1. When ηi = (0.5 , 0.5), ω3 = 0 is only
enforced at the BP itself. Finally, for ηi = (0.99 , 0.99),
no vorticity enforcement is applied at VEPs.

Fig. 2 presents the eigenvalue distributions for the
two boundary schemes under investigation. The simple
scheme ’bs1’ (Fig. 2a) exhibits a cluster of highly unsta-
ble eigenvalues positioned on the imaginary axis (ℜ{ω} =
0), with magnitudes reaching the order of one. Given that
the damping magnitude κ0 at the global boundaries is of
the same order, the numerical solution experiences signif-
icant amplification due to boundary instabilities from the
boundary discretization. Nevertheless, apart from these

0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

(a) ’bs1’

0 0.5 1 1.5 2 2.5 3
-0.1

-0.05

0

0.05

(b) ’bs2’
stability region of the RK4 time-integrator.

Figure 2: Normalized eigenvalue spectra ω of the
discretized LEE in 2D using 7-point central stencils
in the domain’s interior and modified boundary sten-
cils’ bs1’ and ’bs2’ near the circular cylinder with
8 PPD including buffer-layers. , ηi = 0, ηi =
(0.5 , 0.5), ηi = (0.99 , 0.99).

unstable modes, the majority of eigenvalues reside in the
stable negative complex half-plane. As a result, the buffer
layers effectively damp most eigenmodes over time.

In contrast, the optimized boundary scheme ’bs2’
(Fig. 2b) eliminates the prominent unstable eigenvalues
previously observed on the imaginary axis. However, de-
pending on the displacement vector ηi, still minor insta-
bilities can emerge, with magnitudes two orders smaller
than those in ’bs1’, occurring around ℜ{ω} ≈ 1.6. When
ηi = (0.5 , 0.5), all eigenvalues satisfy ℑ{ω} < 0, ensur-
ing that the spatial discretization scheme remains asymp-
totically stable. For other configurations, the 4th-order
Runge Kutta time-integration scheme can provide suffi-
cient damping for these minor instabilities, given an ap-
propriately chosen CFL number. Specifically, all eigen-
values remain within the stability region of the RK4 time
integrator for CFL=1 in Fig. 2b, ensuring numerical sta-
bility.

Consequently, spatial filtering techniques are unnec-
essary in this case. However, decreasing the CFL num-
ber for accuracy improvements may shift some unstable
eigenvalues outside the stability region of the time integra-
tor. Therefore, the interaction between temporal and spa-
tial discretization requires careful consideration to main-
tain stability while optimizing accuracy.

5.2 Scattering of a planar wave

The scattering of a planar wave resolved by 8 PPW at
the circular cylinder from the previous subsection is in-
vestigated. For that, a 128 × 128 computational domain
is considered where the circular cylinder is located at
xi/h + ηi = (64.99, 64.99) in order to demonstrate the
high acccuracy of the boundary formulation ’bs2’. The
solution is advanced in time using a fourth-order Runge-
Kutta scheme (RK4) with a nondimensional timestep of
CFL = 2/3. To minimize reflections at the global bound-
aries, we employ non-reflective sponge zones, extending
16 nodes into the computational domain. The damping
parameters are κ0 = 1 and β = 3.

Fig. 3 presents the pressure solution along the diag-
onal x2 = x1. The numerical solution exhibits minimal
deviation from the exact solution [33], demonstrating the
high accuracy of the boundary treatment. Furthermore,
for the chosen CFL number, the investigated boundary
scheme ’bs2’ remains stable without requiring spatial fil-
tering. Similar results can be obtained for the other cut-
cell configurations examined in Section 5.1.
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Figure 3: Normalized pressure of a scattered planar
wave (8 PPW) at a cylinder (ηi = (0.99 , 0.99)) eval-
uated along the diagonal line x2 = x1 for the bound-
ary scheme ’bs2’ and an optimized central 7-point
scheme (Richter [32]) in the interior of the domain
and CFL = 2/3. exact, ’numerical’.

5.3 Flow-induced noise from a low-Reynolds flow
past a circular cylinder

We present numerical results for the classical aeroacoustic
problem of flow-induced tonal noise generated by a low-
Reynolds-number flow past a circular 2D cylinder using
the LPCE of Seo & Moon [31]. We consider a Reynolds
number Re = 150 and a Mach number Ma = 0.2. The in-
compressible CFD solution is computed using a pressure-
based solver in Ansys® Fluent, 2024 R1 with a second-
order implicit time integration scheme on a structured O-
grid (400D×400D, ∆xmin/D ≈ 0.005), totaling 309,000
quadrilateral elements. Time integration uses a nondimen-
sional timestep of τCFD = ∆tCFDV0/D = 0.05, covering
one vortex shedding cycle in 109 steps. Using the coupled
solver, 25 inner iterations are required to drive the resid-
ual for continuity below 10−9. The nondimensional vor-
tex shedding frequency is given by the Strouhal number
Stl ≈ 0.183, with a second harmonic at Std ≈ 0.366, cor-
responding to the drag dipole. The nondimensional wave-
lengths of the lift dipole are λl/D = 1/(Stl Ma) ≈ 27.3,
and for the drag dipole, Doppler-corrected values range
from λd/D ≈ 10.9 upstream to 16.4 downstream for
Ma = 0.2. Sponge zones [30] are used as non-reflective
boundary treatments with a length of Lbuffer ≈ 2λl/D.

For the LPCE discretization, the cylinder is resolved
by 8 points per diameter (PPD) in an equidistant 5D×5D
square (40 × 40 lattice), yielding sufficient accuracy for
wave propagation and scattering with a classical seven-
point DRP scheme, as demonstrated before. Beyond this,
the acoustic grid expands to 400D × 400D, forming a
structured 400 × 400 layout with 160,000 nodes. The

minimal mesh width h/D = 1/PPD = 0.125 of the
CAA grid is 25 times larger than the minimal mesh width
of the CFD grid. Using an RK4 scheme with a CFL
number of one results in a nondimensional CAA timestep
τCAA = CFL/PPD = 0.125, which is half the Mach num-
ber scaled CFD timestep τ∗CFD = τCFD/Ma = 0.25. Con-
sequently, the CFD source term DP/Dt from the incom-
pressible CFD solution has not been interpolated in time,
considering its sufficient temporal resolution of 109 points
per period. Instead, compact radial basis functions [34]
project the CFD-source data onto the acoustic grid using
Wendland’s C-2 kernel [35] with 15 points per interpola-
tor.

In the LPCE approach, instantaneous acoustic pres-
sure perturbations are computed as ∆p′ = P+p′−P + p′

at each timestep, where P is the hydrodynamic pressure
from the CFD solution, p′ is the perturbed pressure from
the LPCE and P + p′ represents the time-averaged pres-
sure field over a complete shedding cycle here. The RMS-
pressure fluctuations ∆p′RMS shown in Fig. 4 confirm dom-
inant dipole sound emission and minor drag dipole effects,
with comparisons to a DNS by Inoue & Hatakeyama [36]
validating the accuracy of the immersed boundary im-
plementation for a case with inhomogeneous background
flow. The use of a coarse equidistant Cartesian grid
with boundary treatment near the cylinder enables large
timesteps for the CAA solution without requiring spatial
filters or sacrificing accuracy.

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0.25 10-4
0.5 10-4
0.75 10-4

1 10-4

Figure 4: Polar plot of ∆p′RMS at r/h = 75 for
Re = 150 and Ma = 0.2. The cylinder’s di-
ameter D/h = 8. The boundary scheme ’bs2’
(ηi = (0.5 , 0.5)) and an optimized central 7-point
scheme (Richter [32]) in the interior of the domain
is used. CFL = 1. exact (DNS from Inoue &
Hatakeyama [36]), ’numerical’.
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6. CONCLUSIVE REMARKS

This paper presents a stability analysis and computational
validation of an immersed boundary scheme for solving
the LEE/LPCE in aeroacoustics. The stability of the dis-
cretized equations is assessed using the matrix method,
where eigenvalue decomposition helps determine whether
the numerical scheme remains stable. Sponge zones are
used as non-reflective boundary treatments to handle wave
radiation at the global boundaries. Two boundary schemes
are tested: the simpler ’bs1’ scheme, which exhibits sig-
nificant instability, and the refined ’bs2’ scheme, which
successfully suppresses most unstable eigenvalues and en-
sures better stability by incorporating a considerate set of
constraint equations, including a zero-vorticity condition.

The computational validation involves two test cases.
First, the scattering of a planar wave resolved with 8 points
per wavelength by a circular cylinder is simulated, show-
ing excellent agreement with analytical solutions and con-
firming the accuracy of the boundary treatment. Second,
flow-induced noise from a low-Reynolds-number flow
(Re = 150,Ma = 0.2) around a circular cylinder is in-
vestigated using the LPCE. The numerical results align
well with DNS reference data, demonstrating that the im-
mersed boundary method enables stable simulations, in-
cluding nonhomogeneous background flow, without the
need for spatial filtering.

Overall, the study confirms that the proposed bound-
ary scheme provides both stability and accuracy at afford-
able computational cost, making it suitable for aeroacous-
tic applications involving complex geometries and im-
mersed boundaries.
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[24] R. Ewert and W. Schröder, “Acoustic perturbation
equations based on flow decomposition via source fil-
tering,” Journal of Computational Physics, vol. 188,
no. 2, pp. 365–398, 2003.

[25] C. Bogey and C. Bailly, “A family of low disper-
sive and low dissipative explicit schemes for flow
and noise computations,” Journal of Computational
Physics, vol. 194, no. 1, pp. 194–214, 2004.

[26] M. G. S. Izsak and H.-J. Kaltenbach, “Improve-
ment of high-order finite-difference schemes at solid
walls for the linearized Euler equations,” AIAA 2022-
2922. 28th AIAA/CEAS Aeroacoustics 2022 Confer-
ence, Jun. 2022.

[27] J. Goodrich, T. Hagstrom, and J. Lorenz, “Hermite
methods for hyperbolic initial-boundary value prob-
lems,” Mathematics of Computation, vol. 75, no. 254,
pp. 595–630, 2006.

[28] K. W. Thompson, “Time dependent boundary condi-
tions for hyperbolic systems,” Journal of Computa-
tional Physics, vol. 68, no. 1, pp. 1–24, 1987.

[29] J.-P. Berenger, “A perfectly matched layer for the ab-
sorption of electromagnetic waves,” Journal of Com-
putational Physics, vol. 114, no. 2, pp. 185–200, 1994.

[30] M. Israeli and S. A. Orszag, “Approximation of radia-
tion boundary conditions,” Journal of Computational
Physics, vol. 41, no. 1, pp. 115–135, 1981.

[31] J. H. Seo and Y. J. Moon, “Linearized perturbed com-
pressible equations for low Mach number aeroacous-
tics,” Journal of Computational Physics, vol. 218,
no. 2, pp. 702–719, 2006.

[32] C. Richter, Liner Impedance modeling in the time do-
main with flow. PhD thesis, Technische Universität
Berlin, 2009.

[33] P. M. Morse and K. Uno Ingard, Theoretical Acous-
tics. International Series in Pure and Applied Physics.
Princeton University Press, Princeton, 1968.

[34] D. Lazzaro and L. B. Montefusco, “Radial basis func-
tions for the multivariate interpolation of large scat-
tered data sets,” Journal of Computational and Ap-
plied Mathematics, vol. 140, no. 1, pp. 521–536, 2002.
Int. Congress on Computational and Applied Mathe-
matics 2000.

[35] H. Wendland, “Piecewise polynomial, positive defi-
nite and compactly supported radial functions of min-
imal degree,” Advances in Computational Mathemat-
ics, vol. 4, pp. 389–396, 1995.

[36] O. Inoue and N. Hatakeyama, “Sound generation by a
two-dimensional circular cylinder in a uniform flow,”
Journal of Fluid Mechanics, vol. 471, p. 285–314,
2002.

5462


