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ABSTRACT

Acoustic metamaterials offer unique capabilities for
achieving exceptional performance at low frequencies
with compact designs. However, many existing designs
focus on single-function applications, leaving a need for
multi-functional solutions. To address this, we propose a
Dual-Function Passive Acoustic Metamaterial (DFPAM)
that integrates sound absorption and diffusion within the
same structure by applying principles of causality and pas-
sivity. The DFPAM delivers broadband performance with
excellent sound absorption (< α >= 0.85) and diffusion
(< δ >= 0.8) over 1 octave and a half each, i.e., 400-1100
Hz for absorption and 1000-2500 Hz for diffusion. With a
compact thickness of 12 cm-nearly half the size of tradi-
tional treatments-it efficiently uses space (1/3 for absorp-
tion, 2/3 for diffusion) while optimizing the performance
of each state. Importantly, it mitigates the trade-offs of-
ten associated with combining these two acoustic mecha-
nisms. This solution offers significant potential for room
acoustics and environments where space is at a premium.
By addressing multi-functional requirements with dual ef-
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ficiency, The DFPAM offers transformative possibilities
for room acoustics and can be adapted to diverse envi-
ronments where multi-functional acoustic solutions are in
increasing demand.
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1. INTRODUCTION

Most existing acoustic metamaterial solutions remain
configuration-dependent, addressing either sound absorp-
tion or diffusion, but rarely both. Hybrid solutions at-
tempting to integrate these functions have often been con-
strained by physical and spatial trade-offs, leading to sub-
optimal performance.

In this work, we adopt a causality-driven approach
to design a Dual-Function Passive Acoustic Metamate-
rial (DFPAM) that optimizes both absorption and diffu-
sion within a single structure.

2. DESIGN PRINCIPLE

Absorption and diffusion of acoustic waves are contrastive
effects as the former needs to dissipate the acoustic en-
ergy and the latter needs to scatter the waves with mini-
mal dissipation. In the present case, we intend to use a
strategy based on rigidly-backed slits loaded by an array
of Helmholtz resonators as shown in Fig. 1(a).
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By analyzing the sum rule given by the passiv-
ity/causality conditions of the acoustic system accounted
for in this work, it is possible to evaluate the optimal value
of the absorption-to-diffusion surface area ratio, ϕα|δ ,
with a given target absorption spectrum. A depth of 12 cm
is chosen in order to provide a solution that fits within di-
mensions similar to other metamaterial designs reported
in the literature. It follows that min

(
ϕα|δ

)
≈ 0.33. Start-

ing from a 3×3 square grid for the quarter of unit-cell with
a combinatorial ratio of absorption cells to overall cells
ϕα = 1/3, there are a total of 84 possible combinations.
Due to mirror symmetries and further physical considera-
tions regarding the choice of tesselation pattern and diffu-
sion optimality, the rhombus depicted in Fig. 1(a) happens
to be one of the best candidates available for sound diffu-
sion. We finally make use of non-linear constrained min-
imization algorithms for maximizing both absorption and
diffusion as well as determining their respective geome-
tries. Figures 1(b-c) display the analytical, numerical and
experimental sound diffusion and absorption coefficients
obtained throughout this study. The DFPAM achieves
high broadband sound absorption (< α >≈ 0.85) and
diffusion (< δ >≈ 0.8), covering more than one octave in
each configuration. For more details, the reader can refer
to [1].

3. CONCLUSION

In this work, we present a dual-function metasurface ca-
pable of achieving high values of absorption, < α >=
0.85, and diffusion, < δ >= 0.8, for different broad-
band frequency ranges covering more than one octave
in each configuration, i.e., ∆α = [400, 1100] Hz, and
∆δ = [1000, 2500] Hz, while still maintaining compact
dimensions.
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Figure 1. (a) 3D visualization of the DFPAM of side
width D = 30 cm and depth L = 12 cm, with high-
lights on the micro unit cell (violet), used for absorp-
tion measurement in a square impedance tube and
the overall macro unit cell (orange), which is formed
by two-fold mirror symmetry. (inset) Geometrical
parameters of the (x, y) → (i, j) slit for the n-th
slit resonator section of height h and depth az . (b)
Analytical, numerical and experimental absorption
coefficients overlayed with those of each individ-
ual slits. (c) Analytical, numerical and experimental
frequency-dependent diffusion coefficient δ(ω).
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