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ABSTRACT

In this paper, we explore the integration of recurrence
quantification analysis (RQA) features and texture fea-
tures, both extracted from unthresholded RPs. The results
obtained show a balanced performance for the two classi-
fiers considered, and that texture features could be a use-
ful approach as a tool to extract meaningful information
from recurrent plots for the task of automated pathologi-
cal voice recognition.

Keywords: Pathological voice, recurrence plots, texture
features

1. INTRODUCTION

The introduction of the term Recurrence Plot (RP) is at-
tributed to Eckmann, who used it to refer to a method of
visualizing the recurrence of dynamical systems [1]. An
RP is a representation obtained from a recurrence matrix
R; ; described by the equation 1, with 7,5 = 1,..., N,
where N is the number of states of the system and ~ de-
notes equality up to an error or distance ¢ [2].
fi ~T s

Ri7j = { fz ?é f j,
Early applications of recurrence plots can be found in
trajectory exploration in physics and chaos analysis, but
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their use has been extended to geophysics, industrial ap-
plications, and economics, among others.

In medicine, RPs generated from physiological sig-
nals have been analyzed to detect various pathologies. For
example, RPs extracted from ECG signals have been used
to analyze heart rate variability, and to detect arrhythmias.
On the other hand, RPs generated from EEG signals have
been used to classify motor movement/imagery signals,
and to detect attention deficit hyperactivity disorder. One
area that has received increasing attention in the analysis
of RPs is voice analysis. This growing interest stems from
the fact that speech production is considered a nonlinear
dynamic system, and it is well known that the presence
of various voice disorders can introduce aperiodicity and
instability into the voice signal - features that can be re-
vealed through the visual patterns of an RP [3]. Represen-
tative work on pathological voice analysis using RPs in-
cludes recurrence quantization analysis, where a reduced
set of descriptors specifically designed for RPs is used
to characterize them. Such an approach has been used
for pathological voice detection from multiband analysis
of voice signals [4], and from glottal signals [5]. Other
studies have integrated features extracted from the RPs,
such as dynamic invariants and others extracted from the
wavelet transform [6]; and more recently, the use of RPs
as input to convolutional neural networks for Parkinsonian
voice detection has been reported [7]. In this paper, we ex-
plore the integration of recurrence quantification analysis
(RQA) features and texture features, both extracted from
unthresholded RPs. The goal of this integration is not only
to identify a feature set capable of detecting pathological
voice, but also to improve the interpretability of the visual
patterns observed in RPs in the context of voice disorders.
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2. MATERIALS AND METHODS
2.1 Dataset

The data set considered in this paper is the HUPA data
set recorded at the Principe de Asturias Hospital in Al-
cald de Henares, Madrid, Spain. This data set contains
audio signals of the sustained vowel /a/ from 366 adult
Spanish speakers, including 169 with voice pathologies
and 197 with normal voice quality. The recordings were
made using the Kay Computerized Speech Lab Analysis
Station 4300B, sampled at 50 kHz and with 16-bit res-
olution. The pathological samples represent a range of
voice conditions such as nodules, polyps, edema, and car-
cinoma [8], [9-11].

2.2 Recurrence plot generation

The audio signals in the HUPA dataset were subjected to
short-time analysis using Hamming windows, with win-
dow lengths of 40ms and strides of 20ms. For each frame
produced, the time delay is calculated using the Rosen-
stein method [12], with the embedding dimension set to
7, which proved to be optimal across all signals in our in-
ternal tests. Recurrence plots are then generated for each
frame using the PyRQA toolbox [13]. Finally, unthreshed
recurrence plots are generated and normalized from O to
255 to derive the images (textures) shown in figure 1.

2.3 Feature extraction

The resulting recurrence plots, contain visual information
that can be characterized by texture descriptors. In this
work, each recurrence plot is transformed into a feature
vector by computing three sets of descriptors.

A first set contains four of the fourteen descriptors
originally proposed by Haralick, which are obtained from
the co-occurrence matrix of each recurrence plot. In gen-
eral, a co-occurrence matrix is one in which each element
denotes the number of times that a pair of pixel intensities
appears at a distance d, and at a certain angle 6, in the im-
age being evaluated. In this work, co-occurrence matrices
were computed for values of d = 1 and 6§ = 0, 90, 180,
and 270°, from which a final average co-occurrence ma-
trix was obtained in which the following descriptors were
calculated: dissimilarity, homogeneity, AMS, energy, and
correlation [14]. These descriptors have been used exten-
sively for texture analysis in digital images, since of the
original set of 14, these 4 tend to show comparatively lit-
tle correlation between them. A second set includes five
descriptors proposed by Tamura: Coarseness, which aims
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Figure 1: Example recurrence plots.

to quantify the intrinsic size of the texture elements in an
image; Contrast, which measures the property of an image
to simultaneously exhibit low and high pixel intensities;
Directionality, which refers to the probability of finding
pixel intensity variations preferentially in one direction;
Line-likeliness, which measures the probability that the
texture elements in an image are line-shaped; and Rough-
ness, which refers to the overall variability or uniformity
of the image’s pixel intensities [15, 16]. The third set of
features comprises the quantitative measures included in
the PyRQA

2.4 Classification

A 5-fold group cross-validation was used to classify be-
tween pathological and normophonic signals. Care was
taken to ensure that each frame belonging to a given sub-
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ject was kept in the same training or test fold to avoid
data leakage. The resulting features extracted from the
feature set described above were then used to train two
different classifiers: XGBoost and Random Forest. These
classifiers were optimized using a random hyperparameter
search with the parameters described in Table 1.

Table 1: Hyperparameter random grid search space
for XGBoost and Random Forest classifiers.

Classifier

Hyperparameter XGBoost Random Forest
n_estimators [50, 100, 200] [50, 100, 200]
max._depth [3,6,9] [None, 10, 20, 30]
learning._rate [0.01,0.1,0.3] -
colsample bytree [0.6,0.8,1.0] -
gamma [0,0.1,0.5] -
min_samples_split - [2,5,10]
min_samples_leaf - [1,2,4]

3. RESULTS

Table 2 summarizes the performance of the evaluated clas-
sifiers in terms of accuracy, precision, recall, and F1-
score, expressed as the mean =+ standard deviation over
the five cross-validation folds. The results obtained show
a relatively similar performance between the Random
Forest and XGBoost classifiers in detecting pathological
voice signals. This is evidenced by the average values of
the performance metrics, where both classifiers achieve
an overall accuracy of around 70%, and similar standard
deviation values. While the XGBoost classifier shows
slightly higher values in terms of precision, indicating that
it generates fewer false positives when identifying patho-
logical signals, the Random Forest classifier achieves a
better recall, indicating a greater ability to correctly detect
pathological signals.

Table 2: Performance of the evaluated classifiers.

Classifier

Random Forest Xgboost
Accuracy 0.7042 +0.0236  0.7043 £ 0.0518
Precision  0.6849 +0.0229  0.6972 £ 0.0493
Recall 0.6946 +0.0632 0.6726 £ 0.0686

F1  0.6873 £0.0227 0.6819 4 0.0419

To complement the results reported in Table 2, the
corresponding confusion matrices are shown in Figure 2.
These matrices show that the XGBoost classifier correctly
classifies a greater number of healthy signals (145 vs.
141), while the Random Forest classifier correctly clas-
sifies a greater number of pathological signals (121 vs.
117). This pattern is consistent with the trade-off between
precision and recall observed above.
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Figure 2: Confusion matrices for the two classifiers
considered.

In general, Table 1 and Figure 2 indicate that both
classifiers show a balanced behavior, although with
slightly limited performance. A possible explanation for
this behavior is that the evaluated pathological signals
may introduce subtle changes in the RPs that are not eas-
ily distinguishable from healthy signals based only on the
small set of texture and recurrence-based features consid-
ered in this study. Nevertheless, it should be noted that
this relatively small set of features allowed us to achieve
a fairly acceptable classification performance, which en-
courages us to further explore texture features as a pos-
sible strategy to improve the classification performance
of healthy and pathological voice signals based on recur-
rence plot analysis.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we present the results of transforming
healthy and pathological voice signals into recurrence
plots, which were characterized by texture and recurrence-
based features. XGBoost and Random Forest classifiers
were used for classification. The results indicate that tex-
ture features could be a useful approach as a tool to extract
meaningful information from recurrence plots for the task
of automated pathological voice recognition. Future work
should aim at exploring new texture features, as well as
additional two-dimensional representation spaces of voice
signals.
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