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ABSTRACT* 

In the context of vibration predictions, numerical models typ-

ically form an integral part of the process. This is particularly 

important for newly planned structures near railway lines, 

where such calculations are considered as "state of the art" 

and fundamental for reliable predictive computations. Nu-

merical calculations generally assume linear-elastic behavior 

of concrete in its uncracked state (State I) . However, the de-

sign of structures aims to allow a certain degree of cracking 

in the final state (State II) to activate the reinforcement. This, 

however, leads to a reduction in the stiffness of the structure, 

resulting in diminished natural frequencies. Natural frequen-

cies, in particular, represent a critical parameter in the dy-

namic assessment of buildings [1]. 

This work aims to investigate, through nonlinear numerical 

calculations, the influence of cracking and the transition to 

State II on the dynamic properties of structural constructions. 

Keywords: cracked concrete, bilinear dynamics, vibration 

prognosis. 

1. INTRODUCTION 

Vibration forecasts based on numerical calculation models 

are widely used due to the further development of computing 

power and the general and largely cost-effective availability 

of the corresponding computing programs. The basis for the 

calculations is usually the design drawings for the building 

structure. The material parameters of the calculations are 

chosen according to the building materials and cross-sections 

used. In most cases, these programs have stored the 
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corresponding calculation parameters for concrete of differ-

ent strength classes, for example. 

Linear-elastic approaches are usually chosen as material 

models. More specifically, it is assumed that the rigidity of 

the structure remains constant with deformation. To put it 

simply, in Hook's law:[2] 

 

𝐹𝑠 = 𝑘𝑥 (1) 

 

This means that above all the ceiling structures relevant for 

the vibration prediction are assumed to have a linear-elastic 

behavior. However, this is precisely not the approach used as 

a basis for the static design of the structures. In the static de-

sign, it is assumed that due to the low tensile strength of the 

concrete, cracks will form in the tensile area if the tensile 

strength of the concrete is exceeded, and the reinforcing steel 

will be activated [3]. 

However, the crack formation leads to a change in cross-sec-

tion, which has a direct influence on the bending stiffness via 

the connection in Eq. 2 and Eq. 3 [4]. 

 

𝑆 = 𝐸𝐼 (2) 

 

with  

 

𝐼 =
𝑏ℎ3

12
 

(3) 

 

Cracking in the tensile area of the beam causes the cross-sec-

tional area to change, which influences the bending stiffness 

by means of the moment of inertia I Ultimately, increasing 

cracking leads to a decrease in bending stiffness and thus also 

to a change in the natural frequency of the system. 
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In the present work, a simple rectangular cross-section is to 

be investigated, which is subsequently approximated by a 

single-mass oscillator with a bilinear spring. This should 

serve to estimate the dynamic properties of cracked systems. 

2. BASICS 

2.1 The linear single-mass oscillator 

For a first introduction to the topic, the single-mass oscilla-

tion is a good starting point. A harmonic excitation of a 

damped single-mass oscillator with forced harmonic excita-

tion [5], [6], [7] can be represented by the following well-

known equation of motion. 

 

𝑚𝑦̈ + 𝑐𝑦̇ + 𝑘𝑦 = 𝐹0cos⁡(𝜔𝑓𝑡) (4) 

 

By introducing various simplifications and terminologies, 

Eq. 4 can be rewritten into the following form [5] 

 

𝑦̈ + 2𝐷𝜔𝑜𝑦̇ + 𝜔0
2𝑦 = 𝜔0

2𝐹0cos⁡(𝜔𝑓𝑡) (5) 

 

The following terms were introduced. 

 

𝜔0
2 =

𝑘

𝑚
⁡, 2𝐷𝜔0 =

𝑑

𝑚
⁡,𝜔𝐷 = 𝜔0√1 − 𝐷2⁡,

𝜂 =
𝜔𝑓

𝜔0

 

(6) 

 

In the course of this work, we are primarily interested in sta-

tionary solution with continuous harmonic excitation, i.e. in 

the forced oscillation that we obtain as a solution of the inho-

mogeneous differential equation (Eq. 5). By means of the fol-

lowing two-part solution approach (Eq. 7), a stationary solu-

tion of differential euqtion can be found. 

 

y(t) = 𝐶1𝑠𝑖𝑛(𝜔𝑓𝑡) + 𝐶2𝑐𝑜𝑠(𝜔𝑓𝑡)⁡ (7) 

 

The stationary solution of the differential equation then re-

sults in [5], [8]: 

 

y(t) =
𝑦0

√𝑁(𝜂, 𝐷)
𝑠𝑖𝑛(𝜔𝑓𝑡 + 𝜑)⁡ (8) 

 

Based on this solution from Eq. 8, the deflection of the sys-

tem according to harmonic force excitation can be calculated 

for each time t. By deriving the formulation from Eq. 8 ac-

cordingly, the course of the velocity or acceleration can also 

be determined. 

2.2 The bilinear single-mass oscillator 

The bilinear single-mass oscillator is characterized by the 

fact that the spring stiffness k has different values in the ten-

sile and compression ranges. Figure 1 shows an example of 

a working line of a bilinear spring. 

 

 

Figure 1. Working law for a bilinear spring 

This is a property that can also be found, for example, in 

beams under nonlinear consideration. This will be discussed 

in more detail in the following section. In this section, the 

analytical solution of the bilinear single-mass oscillator will 

be discussed. 

In contrast to the linear single-mass system, the two stiff-

nesses k1 and k2 in the compressive and tensile ranges also 

mean that two natural frequencies or period durations are to 

be expected. The mean duration T and the mean stiffness of 

the system can be determined according to Eq. 9 and Eq. 10 

[9]. 

 

𝑇 =
1

2
(𝑇1 + 𝑇2) 

(9) 

 

𝐾 =
4𝑘1𝑘2

(√𝑘1 + √𝑘2)
2 

(10) 

 

The eigen-circular frequency of this system is then obtained 

according to Eq. 11 [5]. 

 

𝜔 =
2𝜋

𝑇
= √(

𝐾

𝑚
) 

(11) 
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Taking into account the definitions in Eq. 12, the differential 

equation from Eq. 4 can be converted into the dimensionless 

form, shown in Eq. 13. 

 

𝜂 =
𝜔𝑓

𝜔
⁡, 𝑌 =

𝑦

𝐹0
𝐾

, 𝜏 = 𝜔𝑓𝑡⁡, 𝛽 =
𝑘2
𝑘1
⁡ , 𝜉 =

𝑐

2𝑚𝜔
 

(12) 

 

𝑌̈ + 2
𝜉

𝜂
𝑌̇ + 𝐾𝑖𝑌 =

1

𝜂2
sin(𝜏) ⁡⁡⁡⁡⁡⁡⁡𝑖 = 1,2 

(13) 

 

The two dimensionless stiffnesses, expressed by the biline-

arity factor β can be seen in Eq. 14 and Eq. 15. 

 

𝐾1 =
(1 + √𝛽)

2

4𝛽𝜂2
 

(14) 

 

𝐾2 =
(1 + √𝛽)

2

4𝜂2
 

(15) 

 

The bilinearity factor β is one of the decisive parameters in 

connection with the calculations cited. In the following sec-

tion, its relevance in relation to a simple bar will be discussed 

in detail. 

By superposition of the particulate solution and the homoge-

neous solution of the differential equation from Eq. 13, the 

general solution of Eq. 13 can be determined. 

 

𝑌 = 𝐴1𝑠𝑖𝑛(𝜏) +⁡𝐴2 cos(𝜏) +

⁡𝑒
−
𝜉𝜏

𝜂 (𝐴3 sin(𝜔𝐷𝜏) + 𝐴4cos⁡(𝜔𝐷𝜏))  

(16) 

 

The damping coefficients for the compression and tension 

range of the spring are thus [9]. 

 

𝜉1 =
2𝜉√𝛽

1 + √𝛽
⁡, 𝜉2 =

2𝜉

1 + √𝛽
⁡ 

(15) 

 

2.3 Derivation of bilinearity from beam theory 

If a simple rectangular cross-section is considered, the 

change in the moment of inertia can be determined as a func-

tion of the geometric factors or the degree of reinforcement 

of the upper and lower layers according to Eq. 4 and Eq. 5 

[10]. 

 

𝐼 =
𝑏𝑥2

3

3
+ (𝑟 − 1)𝑃1𝑏𝑑2(𝑥2 − 𝑐1)

2

+ 𝑟𝑃2𝑏𝑑2(𝑑2 − 𝑥2)
2 

(16) 

𝑟 = ⁡
280

3𝜎𝑐𝑏𝑐
 

(17) 

 

Figure 1 shows a rectangular cross-section with the corre-

sponding geometric parameters used in Eq. 4 and Eq. 5. 

 

Figure 2. Reinforced rectangular cross-section [10] 

If one considers the rectangular cross-section in Fig. 1 under 

the assumption of different reinforcement degrees in the up-

per and lower reinforcement layers or an almost non-existent 

tensile strength of the concrete, an asymmetry, different stiff-

ness of the upper and lower parts occurs in the course of a 

bending stress. In the lower part of the cross-section, crack-

ing will occur and thus a significant decrease in bending stiff-

ness. In practice, the reduction in bending stiffness due to the 

reduction in cross-section due to cracking will be less than 

theoretically expected. This is due to "tension stiffening", i.e. 

those areas in the tensile area that are not affected by cracking 

and still contribute to the bending stiffness. 

In the upper part, the bending stiffness will not change under 

stress. From this asymmetry, β can be considered as a bilin-

earity factor for a simplified view. 

3. CALCULATION EXAMPLE 

3.1 Model assumptions 

To illustrate the analytical considerations shown above, an 

FE model of a single-mass oscillator was created with the 

program package Sofistik. Table 1 shows an overview of the 

calculation parameters. 

A representation of the working line of the spring used can 

be found in Figure 1. 
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The calculations were carried out nonlinearly using the time 

step method (Hilbert-Hughes-Taylor [11]). The time step 

size was chosen as 0.001s. 

Table 1. FE-model assumptions 

Parameters Value 

k2 25,250 kN/m 

k1 12,500 kN/m 

measure 2.500kg 

D 2% 
 

The linear natural frequency of the system shown above is 

about 16Hz. The natural frequency of the reduced stiffness 

of 12,500kN/m is about 11.3Hz. 

 

 

Figure 3. Single degree of freedom System (SDOF) 

calculation model 

This means, according to Eq. 9, an average natural frequency 

of the bilinear system of 13.6Hz at a β=2. 

3.2 Simulation 

Simulations were carried out on the basis of the model pa-

rameters listed in the previous section. In the following, for 

the sake of comparability with the analytical solution, a har-

monic excitation (sine) with an excitation frequency of 16Hz 

was chosen. The excitation was carried out over a period of 

3s. The calculation duration itself was chosen as 5s, so that 

the oscillation of the system was still recorded. 

 

  

Figure 4. Calculation result of linear SDOF 

Figure 4 shows the result of this simulation for a linear sin-

gle-mass oscillator. The time course shows the transient part, 

the stationary part and the oscillation of the system. The fre-

quency analysis shows very clearly that the natural frequency 

of 16Hz clearly corresponds to the excitation frequency of 

16Hz. 

In contrast, fig 5 shows the response of the bilinear system to 

the same excitation as in fig 4. Already in the course of time 

it is clearly recognizable that there is no transient in the reso-

nance range. 

 

  

Figure 5. Calculation result of bilinear SDOF 

The frequency analysis clearly shows that several peaks can 

be seen in the frequency spectrum. On the one hand, the 

16Hz from the excitation is decisive, as well as another sig-

nificant peak in the range of about 13.4Hz. This additional 

peak is due to the mean natural frequency of the bilinear sys-

tem (Eq. 9). This becomes even clearer when the pure swing-

ing out of the bilinear system is evaluated, as can be seen in 

Figure 6. 

After the forced frequency of the system has disappeared, the 

natural frequency of the bilinear system becomes significant 

and agrees very well with the theoretical prediction from Eq. 

9. 

 

Figure 6. Frequency analysis of the decay process of 

a bilinear single-mass system 
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The very low frequency component at about 1Hz is due to 

the asymmetry of the vibration behavior due to the softer be-

havior in the tensile range. This leads to an offset in the sig-

nal, which is reflected in the low-frequency range of the 

spectrum. 

Regarding the question of the relevance of these relationships 

for vibration investigations, the following can be said. The 

results shown above on a very simplified bilinear system 

show that resonance phenomena are significantly weaker, 

since these systems have a different natural vibration behav-

ior according to the load. This could be one reason why often 

predicted strong resonance phenomena on e.g. floor ceilings 

cannot be observed in practice. 

4. SUMMARY AND OUTLOOK 

In the present work, an analytical method for the dynamic 

calculation of a bilinear single-mass oscillator was presented. 

This can be used as a simplified model for estimating bend-

ing natural frequencies of beams. Of particular interest is the 

dynamic behaviour of these systems when the tensile 

strength of the concrete is exceeded, i.e. when the system 

transitions into the cracked state. This is accompanied by a 

reduction in the bending stiffness and thus also a reduction in 

the natural frequency of the system. The results have shown 

that such systems occur in addition to the expected basic nat-

ural frequency, which are due to the reduction of stiffness in 

the tensile area.  

In the example shown above, a bilinearity factor of β=2 was  

chosen. This was chosen because in practice no higher fac-

tors are to be expected due to "tension stiffening". 

In a further step, however, it is still necessary to investigate 

the extent to which higher factors affect behavior. It [9], [10] 

has already been shown that higher factors for β lead to 

greater amplification but also to more significant minor fre-

quencies resulting from the pull range of the system. 
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