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ABSTRACT

In the context of vibration predictions, numerical models typ-
ically form an integral part of the process. This is particularly
important for newly planned structures near railway lines,
where such calculations are considered as "state of the art"”
and fundamental for reliable predictive computations. Nu-
merical calculations generally assume linear-elastic behavior
of concrete in its uncracked state (State I) . However, the de-
sign of structures aims to allow a certain degree of cracking
in the final state (State I1) to activate the reinforcement. This,
however, leads to a reduction in the stiffness of the structure,
resulting in diminished natural frequencies. Natural frequen-
cies, in particular, represent a critical parameter in the dy-
namic assessment of buildings [1].

This work aims to investigate, through nonlinear numerical
calculations, the influence of cracking and the transition to
State |1 on the dynamic properties of structural constructions.

Keywords: cracked concrete, bilinear dynamics, vibration
prognosis.

1. INTRODUCTION

Vibration forecasts based on numerical calculation models
are widely used due to the further development of computing
power and the general and largely cost-effective availability
of the corresponding computing programs. The basis for the
calculations is usually the design drawings for the building
structure. The material parameters of the calculations are
chosen according to the building materials and cross-sections
used. In most cases, these programs have stored the
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corresponding calculation parameters for concrete of differ-
ent strength classes, for example.
Linear-elastic approaches are usually chosen as material
models. More specifically, it is assumed that the rigidity of
the structure remains constant with deformation. To put it
simply, in Hook’s law:[2]

F; = kx Q)
This means that above all the ceiling structures relevant for
the vibration prediction are assumed to have a linear-elastic
behavior. However, this is precisely not the approach used as
a basis for the static design of the structures. In the static de-
sign, it is assumed that due to the low tensile strength of the
concrete, cracks will form in the tensile area if the tensile
strength of the concrete is exceeded, and the reinforcing steel
will be activated [3].
However, the crack formation leads to a change in cross-sec-
tion, which has a direct influence on the bending stiffness via
the connection in Eq. 2 and Eqg. 3 [4].

S=EI 2)
with
[ bh3 (3)
12

Cracking in the tensile area of the beam causes the cross-sec-
tional area to change, which influences the bending stiffness
by means of the moment of inertia | Ultimately, increasing
cracking leads to a decrease in bending stiffness and thus also
to a change in the natural frequency of the system.
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In the present work, a simple rectangular cross-section is to
be investigated, which is subsequently approximated by a
single-mass oscillator with a bilinear spring. This should
serve to estimate the dynamic properties of cracked systems.

2. BASICS

2.1 The linear single-mass oscillator

For a first introduction to the topic, the single-mass oscilla-
tion is a good starting point. A harmonic excitation of a
damped single-mass oscillator with forced harmonic excita-
tion [5], [6], [7] can be represented by the following well-
known equation of motion.

my + cy + ky = Fycos (wyt) 4)

By introducing various simplifications and terminologies,
EQ. 4 can be rewritten into the following form [5]

¥+ 2Dw,y + wiy = w3Fycos (wst) (%)

The following terms were introduced.

k d 6
w3 =—,2Dwy =— ,wp = wyy1— D?, ()
m m
Wy
n=-—
Wo
In the course of this work, we are primarily interested in sta-
tionary solution with continuous harmonic excitation, i.e. in
the forced oscillation that we obtain as a solution of the inho-
mogeneous differential equation (Eq. 5). By means of the fol-
lowing two-part solution approach (Eqg. 7), a stationary solu-
tion of differential eugtion can be found.

y(©) = Cysin(wst) + Cycos(wyt) ()

The stationary solution of the differential equation then re-
sults in [5], [8]:

Yo

VN, D)

Based on this solution from Eq. 8, the deflection of the sys-
tem according to harmonic force excitation can be calculated
for each time t. By deriving the formulation from Eqg. 8 ac-
cordingly, the course of the velocity or acceleration can also
be determined.

y(t) = sin(a)ft +¢) )

2.2 The bilinear single-mass oscillator

The bilinear single-mass oscillator is characterized by the
fact that the spring stiffness k has different values in the ten-
sile and compression ranges. Figure 1 shows an example of
a working line of a bilinear spring.
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Figure 1. Working law for a bilinear spring

This is a property that can also be found, for example, in
beams under nonlinear consideration. This will be discussed
in more detail in the following section. In this section, the
analytical solution of the bilinear single-mass oscillator will
be discussed.

In contrast to the linear single-mass system, the two stiff-
nesses ki and kz in the compressive and tensile ranges also
mean that two natural frequencies or period durations are to
be expected. The mean duration T and the mean stiffness of
the system can be determined according to Eq. 9 and Eqg. 10

9.

T = %(T1 +T3) ©

K= 4k k, (10)
(Vi + k)

The eigen-circular frequency of this system is then obtained
according to Eq. 11 [5].

(11)
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Taking into account the definitions in Eq. 12, the differential
equation from Eq. 4 can be converted into the dimensionless
form, shown in Eq. 13.

Wy Y 2 c (12)
:—,Y:—, = t, =—, =
=" ﬂt wrt. B ky ¢ 2mw
K
.. . 1 13
Y+2%Y+KiY=n—zsin(‘r) i=12 (13)

The two dimensionless stiffnesses, expressed by the biline-
arity factor  can be seen in Eq. 14 and Eq. 15.

(1+B) a9
2

A
i o (LHVB) 19)
2= T

The bilinearity factor /5 is one of the decisive parameters in
connection with the calculations cited. In the following sec-
tion, its relevance in relation to a simple bar will be discussed
in detail.

By superposition of the particulate solution and the homoge-
neous solution of the differential equation from Eq. 13, the
general solution of Eq. 13 can be determined.

Y = A;sin(t) + A, cos(t) + (16)
e 7 (Assin(wpt) + Ascos (wpT))

The damping coefficients for the compression and tension
range of the spring are thus [9].

_2¢JB 2¢ (15)

_1+\/E'€2=1+\/E

$1

2.3 Derivation of bilinearity from beam theory

If a simple rectangular cross-section is considered, the
change in the moment of inertia can be determined as a func-
tion of the geometric factors or the degree of reinforcement
of the upper and lower layers according to Eq. 4 and Eq. 5
[10].

bx3 16

I= Tz + (r — 1)Pybdy(x, — ¢;)? (16)
+ rpzbdz(dz - xZ)Z

280 17)

3Ucbc

Figure 1 shows a rectangular cross-section with the corre-
sponding geometric parameters used in Eq. 4 and Eq. 5.
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Figure 2. Reinforced rectangular cross-section [10]

If one considers the rectangular cross-section in Fig. 1 under
the assumption of different reinforcement degrees in the up-
per and lower reinforcement layers or an almost non-existent
tensile strength of the concrete, an asymmetry, different stiff-
ness of the upper and lower parts occurs in the course of a
bending stress. In the lower part of the cross-section, crack-
ing will occur and thus a significant decrease in bending stiff-
ness. In practice, the reduction in bending stiffness due to the
reduction in cross-section due to cracking will be less than
theoretically expected. This is due to “tension stiffening", i.e.
those areas in the tensile area that are not affected by cracking
and still contribute to the bending stiffness.

In the upper part, the bending stiffness will not change under
stress. From this asymmetry, 5 can be considered as a bilin-
earity factor for a simplified view.

3. CALCULATION EXAMPLE

3.1 Model assumptions

To illustrate the analytical considerations shown above, an
FE model of a single-mass oscillator was created with the
program package Sofistik. Table 1 shows an overview of the
calculation parameters.

A representation of the working line of the spring used can
be found in Figure 1.
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The calculations were carried out nonlinearly using the time
step method (Hilbert-Hughes-Taylor [11]). The time step
size was chosen as 0.001s.

Table 1. FE-model assumptions

Parameters Value

Kz 25,250 KN/m
1 12,500 KN/m
measure 2.500kg

D 2%

The linear natural frequency of the system shown above is
about 16Hz. The natural frequency of the reduced stiffness
of 12,500kN/m is about 11.3Hz.

Figure 3. Single degree of freedom System (SDOF)
calculation model

This means, according to Eq. 9, an average natural frequency
of the bilinear system of 13.6Hz at a 5=2.

3.2 Simulation

Simulations were carried out on the basis of the model pa-
rameters listed in the previous section. In the following, for
the sake of comparability with the analytical solution, a har-
monic excitation (sine) with an excitation frequency of 16Hz
was chosen. The excitation was carried out over a period of
3s. The calculation duration itself was chosen as 5s, so that
the oscillation of the system was still recorded.
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Figure 4. Calculation result of linear SDOF
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Figure 4 shows the result of this simulation for a linear sin-
gle-mass oscillator. The time course shows the transient part,
the stationary part and the oscillation of the system. The fre-
quency analysis shows very clearly that the natural frequency
of 16Hz clearly corresponds to the excitation frequency of
16Hz.

In contrast, fig 5 shows the response of the bilinear system to
the same excitation as in fig 4. Already in the course of time
it is clearly recognizable that there is no transient in the reso-
nance range.
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Figure 5. Calculation result of bilinear SDOF

The frequency analysis clearly shows that several peaks can
be seen in the frequency spectrum. On the one hand, the
16Hz from the excitation is decisive, as well as another sig-
nificant peak in the range of about 13.4Hz. This additional
peak is due to the mean natural frequency of the bilinear sys-
tem (Eq. 9). This becomes even clearer when the pure swing-
ing out of the bilinear system is evaluated, as can be seen in
Figure 6.

After the forced frequency of the system has disappeared, the
natural frequency of the bilinear system becomes significant
and agrees very well with the theoretical prediction from Eq.
9.
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Figure 6. Frequency analysis of the decay process of
a bilinear single-mass system
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The very low frequency component at about 1Hz is due to
the asymmetry of the vibration behavior due to the softer be-
havior in the tensile range. This leads to an offset in the sig-
nal, which is reflected in the low-frequency range of the
spectrum.

Regarding the question of the relevance of these relationships
for vibration investigations, the following can be said. The
results shown above on a very simplified bilinear system
show that resonance phenomena are significantly weaker,
since these systems have a different natural vibration behav-
ior according to the load. This could be one reason why often
predicted strong resonance phenomena on e.g. floor ceilings
cannot be observed in practice.

4. SUMMARY AND OUTLOOK

In the present work, an analytical method for the dynamic
calculation of a bilinear single-mass oscillator was presented.
This can be used as a simplified model for estimating bend-
ing natural frequencies of beams. Of particular interest is the
dynamic behaviour of these systems when the tensile
strength of the concrete is exceeded, i.e. when the system
transitions into the cracked state. This is accompanied by a
reduction in the bending stiffness and thus also a reduction in
the natural frequency of the system. The results have shown
that such systems occur in addition to the expected basic nat-
ural frequency, which are due to the reduction of stiffness in
the tensile area.

In the example shown above, a bilinearity factor of f=2 was
chosen. This was chosen because in practice no higher fac-
tors are to be expected due to "tension stiffening".

In a further step, however, it is still necessary to investigate
the extent to which higher factors affect behavior. It [9], [10]
has already been shown that higher factors for S lead to
greater amplification but also to more significant minor fre-
quencies resulting from the pull range of the system.
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