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ABSTRACT

Deep Audio Processing (DAP) introduces a novel
approach to personalized audio optimization, bridging
established techniques such as time stretching, remixing,
and audio channel separation with a groundbreaking dual-
mode application for offline and real-time scenarios.
While traditional audio processing methods excel in
specific domains, their adaptation to dynamic real-time
environments or  offline  pre-processing  with
synchronization constraints has been limited. DAP
addresses this gap by integrating adaptive latency
management and user-specific audio adjustments to
deliver an enhanced listening experience tailored to
diverse hearing capabilities and preferences. Key
innovations in DAP include latency reduction techniques
leveraging silent or non-speech segments and extended
temporal flexibility for optimizing speech rates, singer-to-
instrument ratios, and dynamic loudness ranges.
Additionally, machine learning—driven auditory scene
classification dynamically adjusts acoustic weights and
parameters, optimizing intelligibility and comfort. This
unified framework supports applications ranging from
live-streaming accessibility enhancements to
personalized audio delivery in cinema, teleconferencing,
and music playback.
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1. INTRODUCTION

Audio experiences are central to communication,
entertainment, and education. Yet common consumer
systems lack flexible, adaptive approaches to personalize
audio for listeners with diverse hearing capabilities-
particularly those requiring specialized real-time
adjustments. Traditional settings such as "Movie Mode"
or "Rock Mode" provide fixed equalization filters without
dynamically adapting to listener needs or acoustic
conditions.

Recent progress in deep learning has enhanced the ability to
analyze and manipulate complex audio signals, particularly
through advanced source separation [1,2] and non-uniform
time scale modification [3]. However, fully deploying these
technologies in everyday consumer applications remains
challenging, as two main issues persist:

1. User-specific personalization: Beyond simple
equalization, listeners may require adjustments of
signal-to-noise ratio (SNR) and speech tempo that
reflect their hearing needs or preferences.

2. Synchronization constraints: Maintaining accurate

sync across events is essential in real-time or time-
sensitive contexts (e.g., live streams or cinematic audio).
Excessive time-stretching can introduce objectionable
delays and user disapproval.
Deep Audio Processing (DAP) addresses these limitations
by integrating classical audio methods (channel separation,
time stretching, remixing) with modern machine learning
algorithms for source separation and content recognition. A
central contribution is DAP’s non-uniform time scale
modification (NU-TSM) procedure, which balances
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the user’s desired speech rate with the need to remain
within allowable latency limits. The main contributions of
this paper are:

2. METHODS

2.1 System Architecture

1. Personalized D cep Aufho Processing System: .We Figure 1 provides a high-level depiction of the DAP system.
propose an assistive architecture that seamlessly unifies The system operates in two layers:
audio source separation, content classification, and user- e Processing Pane (Upper): éource separation. mixin
driven mixing/time-stretch control. and time-s%aling Pper): P ’ &
" Comsraints: We formulte 4 synchroniztion problers * AnalYSis & Control Pane (Lower):  Conten
. yn P classification, user preference retrieval, and adaptive
that constrains how speech segments can be stretched Jogic for mixing and stretching
ith iolating lip- I-ti i . ) . . . .
3 ;Vlte;li: \l;lgtiull’lfeflgres:ﬁz c;;xrezlﬁtrlrlrléitr'e(%;{crer?:sn:rsu an The input is an original audio signal plus user-specific
- dpeed XP ) P . settings (e.g., target SNR and preferred speech rate). The
empmcal user study measuring pre.:ferred speech rates in output is a newly reconstructed signal, where speech
noisy backgrounds for listeners with varying degrees of intelligibility or vocals are enhanced’ according to
hearing loss, informing the default target speech rates . o
resets for our DAP system personalized criteria.
p ’ Next, we briefly describe the basic building blocks of the
DAP system.
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Figure 1. High level architecture of the Deep Audio Processing (DAP) system for assistive audio applications,
illustrating the integration of audio capturing, source separation, content classification, enhancement logic, and
audio enhancement modules. The upper pane is the “processing pane” and the lower is the “analysis & control
pane”.
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2.1.1 Audio Source Separation (ASS)

The ASS module splits incoming audio into constituent
sources such as speech/vocals, music, and sound effects. It
uses a deep neural network architecture inspired by the MRX
model [1]. Separated sources are crucial for fine-grained
manipulation - particularly for adjusting gain or stretching
specific elements (e.g., speech) without affecting
background signals. Given an input signal x(t), the goal is
to decompose it into constituent sources. This step is critical
for enabling individualized control over each source’s gain
and temporal characteristics. Our current implementation
follows the “cocktail-fork” concept [1], that separates the
audio into three sources, speech, music, and sound effects
(sfx). In the more general case, the output of the ASS module
is a set of N source estimates,

{81(2), 52(0), ..., Sn (D)} (1)
fed into subsequent processing blocks for enhancement and
personalization.

2.1.2 Audio Content Classification (ACC)

In parallel, a convolutional neural network (CNN) classifies
audio content into categories (inspired by [4]) (e.g.,
conversation, music, ambient noise). This “pseudo” real-
time classification produces a time-varying score vector
indicating the probability of each category.

c® = [a®, .. x@®] 2)
where each component ¢, (t) reflects the likelihood of a
specific content category k, and K is the total number of
contents categories. These scores guide the system’s
adaptive mixing and time-scaling decisions. The index ¢t
refers to the corresponding audio frame starting time'.

2.1.3 Personalized Targets

User preferences for (i) speech/vocal SNR relative to
accompaniment and (ii) speech rate in various noise
conditions is stored in an external module. These preferences
can be specified manually (e.g., through an interface) or
derived from user data. The system references these targets
to dynamically apply mixing gains and stretching factors.
These targets guide the subsequent processing steps within
the EEL module.

! For simplicity we use the same notation for time indexing, while in
all analysis modules and in most processing modules it applies to the
index of the audio frame
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2.1.4 Enhancement & Equalization Logic (EEL)

The EEL module interprets classification scores and user
targets to generate control logic signals to subsequent
processing blocks. It carries out:

2.1.4.1 Mixing Logic for SNR Target
In this module gains are computed for each source to match
the desired speech-over-background ratio. The time-varying
gain parameters are denoted as

{9:(©), 9:(©), ..., gn (D)} . 3)
Practically, the SNR calculation is performed frame-by-
frame. The calculated gain parameters are then passed to the

mixer, which applies the adjustments to ensure that the
desired SNR is maintained throughout the audio signal.

2.1.4.2 Speech Rate Estimation and Time Scale Logic

The time scale logic module focuses on the dynamic aspects
of speech. It first estimates the local speech rate from the
separated speech signal §, (t), to quantify the speech tempo
in terms of phonemes-per-second (PPS). There are various
approaches for approximating the PPS. The simple ones may
consider spectral transition differences between time frames,
while the more complicated may use a phonetic recognizer
or speech recognition (more applicable to offline mode). This
measurement is critical for determining how to adjust the
audio timescale. Based on this estimation and the user’s
preferred speech rate, the module computes an adaptive
time-scale factor a(t) to achieve the desired speech rate,
a(t) = a(c(t), PPS(t)) , (4)
where €(t) represents the classification scores from the ACC
block, and PPS(t) represent the estimated momentary
speech rate at time t. Eqn. 4, emphasizes that the scale factor
is not only adjusted according to the momentary PPS, but is
also oriented to the auditory scene, whether it contains
merely speech (and may need to be stretched) or if it contains
a sound effect (for instance the sound of a gunshot) that needs
to maintain the same ratio (factor of 1 indicating no need for
stretching), or whether it is a non-speech or a pause section
that may be shortened.
The a(t) factor guides the NU-TSM process, allowing for
localized adjustments that slow down or speed up audio
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segments while preserving the natural timing of non-speech
elements.

Together, these two components enable the EEL module to
output two sets of control signals: the gain parameters for
achieving the desired SNR and the adaptive time-scale factor
for targeted speech rate modification. This logic-based stage
lays the groundwork for the subsequent re-mixing and time-
stretching that occur in the Audio Enhancement &
Equalization and NU-TSM modules respectively, ensuring
that personalized audio processing meets user preferences.

2.1.5 Audio Enhancement & Equalization (AEE)

The AEE module rebuilds the final audio from the separated
sources using the gains calculated by the EEL. Additional
filters or effects may also be applied to each separated source
as desired. The remixing is performed by:

X, 9:(0)3:).

y) = )

2.1.6 Non-Uniform Time Scale Modification (NU-TSM)

The final component, NU-TSM, applies the adaptive stretch
factor to slow down high-rate speech segments and
optionally compress silence or non-speech segments. A key
challenge here is ensuring overall synchronization.
Excessive stretching can cause noticeable latency or lip-sync
mismatches, so the NU-TSM module operates within strict
deviation bounds.

2.1.6.1 NU-TSM in Sync — Problem Derivation

Time scale modification in sync poses additional limitations
on latency or on “run ahead” in offline scenarios. Typically,
TSM algorithms relate to two parameters — the analysis
frame step (which is a constant) and the synthesis frame step
which is set according to the required stretch factor a(t).
when adding sync constraints, we wish to force the synthesis
frames to be located inside a certain shift from the original
location of the corresponding analysis frame, and this poses
a new optimization problem, which is derived next. In the
following derivation we use a discrete notation for the stretch
factor @, = a(t), suggesting that ¢ is a running frame index.

Problem derivation:

- Assume a given audio signal has T analysis steps, and a
series of stretch factors (per frame) is given by
{ag, @y, ..., @y, ..., ar} where ay = 0.

- Let a be the constant analysis step (samples or time units).
- Hence, a requested synthesis step at time t would be aa;.
- The analysis frame position at time t is defined by:
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Xt = Xo + at (6)
where x, is the initial position of the analysis.
- The “requested” synthesis position at time ¢ follows the
recursion

Zty1 = Z FAApyy (7
where z, is the initial position of the synthesis (typically
Xo = Zp), and the momentary stretch time between two
consecutive frames is defined by

Zi41 —Z = A Qpyq (3)
- The terms z, are the requested synthesis positions without
sync limitations. We seek a new set of synthesis positions,
{yo, -» Y¢r ., yr} that aim to maintain the momentary
stretch time of all steps, z;,; — z;, while satisfying strict
sync conditions to the original analysis positions, defining L
to be the allowed time deviation from the original position,
the optimization problem is formulated as follows:

minimize  Y{Z0|Ver1 — Vo) — (Zewr — 20|

©)
v

v

s.t. ly: — x| <L

Yer1 — Ve 20

t €10,..,T}
t €{0,..,T}

Simplifying by replacing variables produces the following
optimization problem,

minimize S50 1Yee — ye — aapl
(10)
s.t. ly; —xo—at| <L V te{0,..,T}
yt+1_yt2 0 VtE{O,,T}

This formulation guarantees that the solution’s time sync will
not deviate from the preset boundaries however, the
requested target scale is not guaranteed, it only tries to
optimize it to the best effort.

Various real-time or offline approximation methods can
solve this optimization efficiently. One approximation uses a
greedy regressive procedure that may fit real-time scenarios
due to its simplicity. In some conditions, the solution may
be further simplified. For example, when assuming a; > 1
forallt = 1, ..., T; the problem reduces to a convex problem
with an analytical solution. In an offline scenario over an
audio part of original length T, where the requested total
length is calculated by z; = a YT _; a,, (following Eqn. (7)),
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and the total margin is L before and after the speech part;
setting z, = x,, leads to a simple solution,

,lf ZTSTS+L

Zt
vt Af zp =T, + 2L

—L+zt( Zr )
- (G-1)+=(5)

This offline solution obtains a “run ahead” time on Yy,
(having a non-speech margin before the referenced part),
allowing to compensate for the latency accumulated in the
stretched part. This simplified result (Eqn. (11)) provides
satisfactory outcomes in many situations.

Ve (11)

else

2.2 User Experiment: Speech Rate Preferences Noise
2.2.1 Participants

A total of 44 participants with bilateral hearing impairment
took part in the study. Participants were categorized by the
severity of their hearing loss (HL) [5]; mild HL (n = 23),
moderate HL (n = 8), severe HL (n = 6), and profound HL (n
=7). All provided informed consent and completed an online
auditory profile questionnaire prior to testing, including
hearing loss characteristics, onset, stability, and type of
hearing impairment. The experiments were conducted
remotely, with participants using their own listening devices
in a quiet home environment. Stimuli and Equipment

2.2.2 Stimuli and Equipment

Speech stimuli consisted of recordings of a professional
female narrator in a studio environment. The narrator read
aloud multiple pages from a novel, ensuring natural
prosody and articulation. The speech stimuli were
presented simultaneously with a separately recorded
police siren. The speech and siren were mixed to create a
controlled background noise condition, ensuring
consistency across all participants. All audio files were
presented in MP3 format (44,100 Hz, 32-bit sampling
rate). Participants were instructed to use headphones or
their regular hearing aids/cochlear implants (if applicable)
and to avoid adjusting device settings during the
experiment. For further information, see [5].

2.2.3 Procedure

The experiment consisted of two phases. In the
preliminary task, each participant determined their most
comfortable level (MCL) for listening to speech in the
presence of background noise. This was done using two
pre-prepared audio files: one containing the narrated
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recordings and the other containing a constant-level
police siren noise. The noise was played at a fixed
intensity, while participants used a slider to adjust the
intensity of the narrator’s voice until they reached the
minimal SNR that allowed for comfortable speech
understanding.

Once the participant's individual SNR was determined,
they proceeded to the main task, where they adjusted the
speech rate of the narrator while listening under the same
background noise conditions and using the SNR
established in the preliminary phase. Participants used a
sliding control to modify the recorded speech rate to the
maximum speed at which they could still comprehend the
story content.

2.2.4 Data Collection and Analysis

Data collection was conducted remotely via an online
interface as described in [5]. Only participants who fully
completed the experimental tasks were included in the
analysis. An SPSS software was used for statistical
analysis. Preferred speech rates (mean =+ standard
deviation) were calculated for each participant and group.
A one-way analysis of variance (ANOV A) was conducted
to assess whether speech rate preferences differed
significantly between groups. Post hoc tests (Tukey’s
HSD) were performed to evaluate pairwise differences.
Effect sizes (1?) were calculated to quantify the magnitude
of observed differences.

3. RESULTS

3.1 DAP System Outcomes

Figures 2 and 3 illustrate qualitative examples of how DAP
adjusts SNR and speech tempo over time. Figure 2 presents
a snapshot of the DAP system in the time domain, over a
short audio example. It shows the speech SNR adjustment
obtained through the mixing gains, the speech rate
measurement and the time-scale modification in term of
accumulated latency. It is observed that the NU-TSM
algorithm stretches the speech section (during the first
second of the audio), followed by shortening the non-speech
segment of the audio.

Figure 3 presents an example of an audio recording
containing a heated debate between two people. One can
observe the time-scaling applied non-uniformly, where the
pre-treated higher speech rates receive a larger stretch factor,
while the pauses in the speech sections are shortened to
compensate for the latency caused by the stretching process.
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Thus, the maximum latency does not exceed a predefined
limit of L = 240 msec. This parameter can be adjusted
according to user needs or even according to the audio
content classification.

Clearly, the effectiveness of NU-TSM is highly influenced
by the allowable sync deviation and the structure of the
speech segments. When a conversation or cinematic audio
track includes sufficient pauses, users can experience
improved intelligibility without perceiving noticeable
synchronization issues.
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Figure 2. A snapshot of a processed audio example
from the DAP system. The two upper plots describe
the separated sources of ‘speech’ and ‘background’
(music and sound effects combined) with the gain
factor (green and red gain curves) applied to
emphasize speech. The third plot describes the
approximated original speech rate, which is over 15
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PPS, and the bottom plot describes the time scale
modification in terms of latency. The speech part is
stretched by almost 20%, allowing a latency of 240
msec, while the non-speech part is shortened to
reduce the time latency. Notice that the line slope
presents an effective scale factor.
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Figure 3. A snapshot of an audio recording of a
heated debate. The target SNR is applied to most of
the frames. Bursts of high speech rates exceed 15
PPS, and the time-scaling is applied non-uniformly.
The maximum time deviation is 240 msec - as
predefined in the system setting.

11" Convention of the European Acoustics Association
Milaga, Spain * 23" — 26™ June 2025 ¢

SOCIEDAD ESPANOLA

SEA OE AGUSTICA



FORUM ACUSTICUM
aile EURONOISE

3.2 User Experiment Speech Rate Preference in
Background Noise

Descriptive statistics for speech rate preferences in the
presence of a background police siren are provided in
Figure 4. Results show a general trend of decreasing
preferred PPS with increasing hearing loss severity.
Participants with mild HL preferred a mean PPS of 10.94,
moderate HL preferred 10.42, severe HL preferred 9.30,
whereas those with profound HL preferred a significantly
slower rate of 8.51. On average, the preferred speech rate
in background noise was 10.24 PPS.

A one-way ANOVA revealed a statistically significant
effect of hearing loss severity on preferred PPS [F(3,40)
= 3.084, p = .038, #7=0.188]. Post hoc tests showed that
the maximal preferred PPS for the perception of a female
narrator speaking in background noise decreased
significantly from mild to profound HL (-2.43 PPS, p =
0.039). No other significant group differences were
observed.

These results suggest that individuals with greater hearing
impairment prefer slower speech rates when background
noise is present. Future studies should explore additional
auditory factors influencing speech rate preference, such
as spectral balance and dynamic range compression.
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Figure 4. Maximal Speech Rate Allowing Perception
(in PPS) of a female narrator in background noise
across different hearing loss groups (Mild, Moderate,
Severe, Profound and Mean). Error bars represent the
standard error of the mean. * Indicates a statistically
significant difference between the marked groups (p
<0.05).

4. DISCUSSION

This paper suggests a basic and general description for an
assistive audio processing system. The practical system is
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more complicated and is not detailed here. Since the final
output of the system depends on a series of different
modules, source separator, content classification,
auditory-scene oriented logic of time-scale modification,
and time-constrained stretching algorithm, many
independent variables may affect it. Because of this
complexity, it is difficult to quantitatively validate the
most influencing factors as they are entangled together.
Future user experiments should address this issue. It also
seems that to examine the quality of different algorithms,
further comparative experiments should be conducted to
provide empirical quantitative analysis.

While our study provides valuable primary insights about
speech rate preferences in the presence of background
noise, some limitations should be noted. First, hearing
loss severity was self-reported rather than audiometrically
verified, which may introduce variability in group
classification. Future studies should incorporate objective
hearing assessments to strengthen classification accuracy.
Second, the experiment was limited to a single type of
noise which in future experiments would be expanded to
variable types of noise. The present study primarily
examined speech intelligibility improvements. Additional
research is needed to assess how DAP’s strategies affect
non-speech content such as music or sound effects,
especially in scenarios where the artistic intent or
emotional impact of the audio track must be preserved.

5. CONCLUSION

This paper has introduced a personalized DAP framework
that combines advanced source separation, content-aware
mixing, and NU-TSM to enhance audio in both offline
and real-time contexts. By leveraging machine learning
for audio content classification, DAP enables targeted
improvements in speech intelligibility, adaptable speech-
rate manipulation, and precise synchronization with
visual media or other concurrent events. While the
primary focus is on speech intelligibility, the underlying
system can be adapted to enrich various user experiences
- for example, by emphasizing a specific instrument or
sound source.

Crucially, our NU-TSM approach shows how
intelligibility can be improved without exceeding
predefined latency constraints. We also introduced a user
study on speech-rate preferences in noisy environments,
establishing baseline presets that reflect listeners’
auditory needs across different degrees of hearing loss.
Although our findings suggest that DAP meets many user
preferences, practical challenges persist - especially
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regarding real-time processing demands and stringent
latency requirements.

Moreover, fully understanding users’ preferences and
requirements necessitates subjective hearing experiments,
due to the wide range of factors that shape listening
experiences - hearing profiles, attention deficits, age, and
content variability (e.g., music genres, cinematic audio,
special effects). These complexities underscore the
individualized nature of audio preferences and highlight
the importance of extensive user-centric testing to capture
diverse needs accurately.

Future research will address these constraints and further
refine personalized audio processing by exploring more
robust adaptation strategies, investigating broader content
types, and incorporating formal audiometric evaluations.
Ultimately, this work lays the groundwork for a versatile
DAP system capable of serving a wide audience with
varied listening preferences and challenges.
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