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ABSTRACT* 

Deep Audio Processing (DAP) introduces a novel 
approach to personalized audio optimization, bridging 
established techniques such as time stretching, remixing, 
and audio channel separation with a groundbreaking dual-
mode application for offline and real-time scenarios. 
While traditional audio processing methods excel in 
specific domains, their adaptation to dynamic real-time 
environments or offline pre-processing with 
synchronization constraints has been limited. DAP 
addresses this gap by integrating adaptive latency 
management and user-specific audio adjustments to 
deliver an enhanced listening experience tailored to 
diverse hearing capabilities and preferences. Key 
innovations in DAP include latency reduction techniques 
leveraging silent or non-speech segments and extended 
temporal flexibility for optimizing speech rates, singer-to-
instrument ratios, and dynamic loudness ranges. 
Additionally, machine learning–driven auditory scene 
classification dynamically adjusts acoustic weights and 
parameters, optimizing intelligibility and comfort. This 
unified framework supports applications ranging from 
live-streaming accessibility enhancements to 
personalized audio delivery in cinema, teleconferencing, 
and music playback.  
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1. INTRODUCTION

Audio experiences are central to communication, 
entertainment, and education. Yet common consumer 
systems lack flexible, adaptive approaches to personalize 
audio for listeners with diverse hearing capabilities-
particularly those requiring specialized real-time 
adjustments. Traditional settings such as "Movie Mode" 
or "Rock Mode" provide fixed equalization filters without 
dynamically adapting to listener needs or acoustic 
conditions. 
Recent progress in deep learning has enhanced the ability to 
analyze and manipulate complex audio signals, particularly 
through advanced source separation [1,2] and non-uniform 
time scale modification [3]. However, fully deploying these 
technologies in everyday consumer applications remains 
challenging, as two main issues persist: 
1. User-specific personalization: Beyond simple

equalization, listeners may require adjustments of
signal-to-noise ratio (SNR) and speech tempo that
reflect their hearing needs or preferences.

2. Synchronization constraints: Maintaining accurate
sync across events is essential in real-time or time-
sensitive contexts (e.g., live streams or cinematic audio).
Excessive time-stretching can introduce objectionable
delays and user disapproval.

Deep Audio Processing (DAP) addresses these limitations 
by integrating classical audio methods (channel separation, 
time stretching, remixing) with modern machine learning 
algorithms for source separation and content recognition. A 
central contribution is DAP’s non-uniform time scale 
modification (NU-TSM) procedure, which balances 
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the user’s desired speech rate with the need to remain 
within allowable latency limits. The main contributions of 
this paper are: 
1. Personalized Deep Audio Processing System: We

propose an assistive architecture that seamlessly unifies
audio source separation, content classification, and user-
driven mixing/time-stretch control.

2. Time-Scale Modification Under Latency
Constraints: We formulate a synchronization problem
that constrains how speech segments can be stretched
without violating lip-sync or real-time requirements.

3. Speech Rate Preference Experiment: We present an
empirical user study measuring preferred speech rates in
noisy backgrounds for listeners with varying degrees of
hearing loss, informing the default target speech rates
presets for our DAP system.

2. METHODS

2.1 System Architecture 

Figure 1 provides a high-level depiction of the DAP system. 
The system operates in two layers: 
• Processing Pane (Upper): Source separation, mixing,

and time-scaling.
• Analysis & Control Pane (Lower): Content

classification, user preference retrieval, and adaptive
logic for mixing and stretching.

The input is an original audio signal plus user-specific 
settings (e.g., target SNR and preferred speech rate). The 
output is a newly reconstructed signal, where speech 
intelligibility or vocals are enhanced according to 
personalized criteria. 
Next, we briefly describe the basic building blocks of the 
DAP system. 

Figure 1. High level architecture of the Deep Audio Processing (DAP) system for assistive audio applications, 
illustrating the integration of audio capturing, source separation, content classification, enhancement logic, and 
audio enhancement modules. The upper pane is the “processing pane” and the lower is the “analysis & control 
pane”. 
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2.1.1 Audio Source Separation (ASS) 

The ASS module splits incoming audio into constituent 
sources such as speech/vocals, music, and sound effects. It 
uses a deep neural network architecture inspired by the MRX 
model [1]. Separated sources are crucial for fine-grained 
manipulation - particularly for adjusting gain or stretching 
specific elements (e.g., speech) without affecting 
background signals. Given an input signal 𝒙(𝑡), the goal is 
to decompose it into constituent sources. This step is critical 
for enabling individualized control over each source’s gain 
and temporal characteristics. Our current implementation 
follows the “cocktail-fork” concept [1], that separates the 
audio into three sources, speech, music, and sound effects 
(sfx). In the more general case, the output of the ASS module 
is a set of 𝑁 source estimates, 
 

{𝒔̂1(𝑡), 𝒔̂2(𝑡), … , 𝒔̂𝑁(𝑡)}                     (1) 
 
fed into subsequent processing blocks for enhancement and 
personalization. 

2.1.2 Audio Content Classification (ACC) 

In parallel, a convolutional neural network (CNN) classifies 
audio content into categories (inspired by [4]) (e.g., 
conversation, music, ambient noise). This “pseudo” real-
time classification produces a time-varying score vector 
indicating the probability of each category.  
 

𝒄̅(𝑡)    =    [ 𝑐1(𝑡),  … ,  𝑐𝐾(𝑡) ]
𝑇                      (2) 

 
where each component 𝑐𝑘(𝑡) reflects the likelihood of a 
specific content category 𝑘, and 𝐾 is the total number of 
contents categories. These scores guide the system’s 
adaptive mixing and time-scaling decisions. The index 𝑡 
refers to the corresponding audio frame starting time1. 

2.1.3 Personalized Targets 

User preferences for (i) speech/vocal SNR relative to 
accompaniment and (ii) speech rate in various noise 
conditions is stored in an external module. These preferences 
can be specified manually (e.g., through an interface) or 
derived from user data. The system references these targets 
to dynamically apply mixing gains and stretching factors. 
These targets guide the subsequent processing steps within 
the EEL module. 

————————— 
1 For simplicity we use the same notation for time indexing, while in 
all analysis modules and in most processing modules it applies to the 
index of the audio frame                  

2.1.4 Enhancement & Equalization Logic (EEL) 

The EEL module interprets classification scores and user 
targets to generate control logic signals to subsequent 
processing blocks. It carries out: 

2.1.4.1 Mixing Logic for SNR Target 
In this module gains are computed for each source to match 
the desired speech-over-background ratio. The time-varying 
gain parameters are denoted as 
 

{𝒈1(𝑡),  𝒈2(𝑡), … ,  𝒈𝑁(𝑡)} .                     (3) 
 
Practically, the SNR calculation is performed frame-by-
frame. The calculated gain parameters are then passed to the 
mixer, which applies the adjustments to ensure that the 
desired SNR is maintained throughout the audio signal. 

2.1.4.2 Speech Rate Estimation and Time Scale Logic 
The time scale logic module focuses on the dynamic aspects 
of speech. It first estimates the local speech rate from the 
separated speech signal 𝒔̂1(𝑡), to quantify the speech tempo 
in terms of phonemes-per-second (PPS). There are various 
approaches for approximating the PPS. The simple ones may 
consider spectral transition differences between time frames, 
while the more complicated may use a phonetic recognizer 
or speech recognition (more applicable to offline mode). This 
measurement is critical for determining how to adjust the 
audio timescale. Based on this estimation and the user’s 
preferred speech rate, the module computes an adaptive 
time-scale factor 𝜶(𝑡) to achieve the desired speech rate, 
 

𝜶(𝑡) = 𝜶(𝒄̅(𝑡), PPS(𝑡)) ,                  (4) 
 
where 𝒄̅(𝑡) represents the classification scores from the ACC 
block, and PPS(𝑡) represent the estimated momentary 
speech rate at time 𝑡. Eqn. 4, emphasizes that the scale factor 
is not only adjusted according to the momentary PPS, but is 
also oriented to the auditory scene, whether it contains 
merely speech (and may need to be stretched) or if it contains 
a sound effect (for instance the sound of a gunshot) that needs 
to maintain the same ratio (factor of 1 indicating no need for 
stretching), or whether it is a non-speech or a pause section 
that may be shortened. 
The 𝜶(𝑡) factor guides the NU-TSM process, allowing for 
localized adjustments that slow down or speed up audio 
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segments while preserving the natural timing of non-speech 
elements. 
Together, these two components enable the EEL module to 
output two sets of control signals: the gain parameters for 
achieving the desired SNR and the adaptive time-scale factor 
for targeted speech rate modification. This logic-based stage 
lays the groundwork for the subsequent re-mixing and time-
stretching that occur in the Audio Enhancement & 
Equalization and NU-TSM modules respectively, ensuring 
that personalized audio processing meets user preferences. 

2.1.5 Audio Enhancement & Equalization (AEE) 

The AEE module rebuilds the final audio from the separated 
sources using the gains calculated by the EEL. Additional 
filters or effects may also be applied to each separated source 
as desired. The remixing is performed by: 
 

𝒚̃(𝑡) =  ∑ 𝒈𝑖(𝑡)𝒔̂𝑖(𝑡)
𝑁
𝑖=1 .                      (5) 

 

2.1.6 Non-Uniform Time Scale Modification (NU-TSM) 

The final component, NU-TSM, applies the adaptive stretch 
factor to slow down high-rate speech segments and 
optionally compress silence or non-speech segments. A key 
challenge here is ensuring overall synchronization. 
Excessive stretching can cause noticeable latency or lip-sync 
mismatches, so the NU-TSM module operates within strict 
deviation bounds. 

2.1.6.1 NU-TSM in Sync – Problem Derivation 
Time scale modification in sync poses additional limitations 
on latency or on “run ahead” in offline scenarios. Typically, 
TSM algorithms relate to two parameters – the analysis 
frame step (which is a constant) and the synthesis frame step 
which is set according to the required stretch factor 𝜶(𝑡). 
when adding sync constraints, we wish to force the synthesis 
frames to be located inside a certain shift from the original 
location of the corresponding analysis frame, and this poses 
a new optimization problem, which is derived next. In the 
following derivation we use a discrete notation for the stretch 
factor 𝛼𝑡 ≡ 𝜶(𝑡), suggesting that 𝑡 is a running frame index.  
 
Problem derivation: 
- Assume a given audio signal has 𝑇 analysis steps, and a 
series of stretch factors (per frame) is given by 
{𝛼0, 𝛼1, … , 𝛼𝑡 , … , 𝛼𝑇} where 𝛼0 = 0. 
- Let 𝒂 be the constant analysis step (samples or time units). 
- Hence, a requested synthesis step at time 𝑡 would be 𝒂𝛼𝑡. 
- The analysis frame position at time 𝑡 is defined by: 
 

𝑥𝑡 = 𝑥0 + 𝒂𝑡                                    (6) 
 
where 𝑥0 is the initial position of the analysis. 
- The “requested” synthesis position at time 𝑡 follows the 
recursion 

𝑧𝑡+1 = 𝑧𝑡 + 𝒂 𝛼𝑡+1    ,                       (7) 
 
where 𝑧0 is the initial position of the synthesis (typically 
𝑥0 = 𝑧0), and the momentary stretch time between two 
consecutive frames is defined by 
 

𝑧𝑡+1 − 𝑧𝑡 = 𝒂 𝛼𝑡+1    .                       (8) 
 
- The terms 𝑧𝑡 are the requested synthesis positions without 
sync limitations. We seek a new set of synthesis positions, 
{𝑦0 , … , 𝑦𝑡 , … , 𝑦𝑇} that aim to maintain the momentary 
stretch time of all steps, 𝑧𝑡+1 − 𝑧𝑡 , while satisfying strict 
sync conditions to the original analysis positions, defining 𝐿 
to be the allowed time deviation from the original position, 
the optimization problem is formulated as follows:  
                        

{
 
 

 
 minimize ∑ |(𝑦𝑡+1 − 𝑦𝑡) − (𝑧𝑡+1 − 𝑧𝑡)|

𝑇−1
𝑡=0

𝑠. 𝑡. |𝑦𝑡 − 𝑥𝑡| ≤ 𝐿        ∀      𝑡 ∈ {0, … , 𝑇}

𝑦𝑡+1 − 𝑦𝑡 ≥ 0       ∀      𝑡 ∈ {0, … , 𝑇}

     (9) 

 
Simplifying by replacing variables produces the following 
optimization problem, 
 

{
 
 

 
 minimize ∑ |𝑦𝑡+1 − 𝑦𝑡 −  𝒂𝛼𝑡+1|

𝑇−1
𝑡=0

𝑠. 𝑡. |𝑦𝑡 − 𝑥0 − 𝒂𝑡| ≤ 𝐿    ∀  𝑡 ∈ {0, … , 𝑇}

𝑦𝑡+1 − 𝑦𝑡 ≥  0            ∀  𝑡 ∈ {0, … , 𝑇}

   (10) 

 
This formulation guarantees that the solution’s time sync will 
not deviate from the preset boundaries however, the 
requested target scale is not guaranteed, it only tries to 
optimize it to the best effort.  
Various real-time or offline approximation methods can 
solve this optimization efficiently. One approximation uses a 
greedy regressive procedure that may fit real-time scenarios 
due to its simplicity.  In some conditions, the solution may 
be further simplified. For example, when assuming 𝛼𝑡 ≥ 1 
for all 𝑡 = 1,… , 𝑇; the problem reduces to a convex problem 
with an analytical solution. In an offline scenario over an 
audio part of original length 𝑇𝑠 where the requested total 
length is calculated by 𝑧𝑇 = 𝒂∑ 𝛼𝑛

𝑇
𝑛=1  (following Eqn. (7)), 

2778



11th Convention of the European Acoustics Association 
Málaga, Spain • 23rd – 26th June 2025 •  

 

 

and the total margin is 𝐿 before and after the speech part; 
setting 𝑧0 = 𝑥0,  leads to a simple solution,  
 

𝑦𝑡 =

{
 
 

 
 𝑧𝑡 , if   𝑧𝑇 ≤ 𝑇𝑠 + 𝐿 

−𝐿 + 𝑧𝑡 (
𝑇𝑠+2𝐿

𝑍𝑇
) , if   𝑧𝑇 ≥ 𝑇𝑠 + 2𝐿

− (
𝑧𝑇

𝑇𝑠
− 1) + 𝑧𝑡 (

𝑇𝑠+𝐿

𝑍𝑇
) else

  (11) 

 
This offline solution obtains a “run ahead” time on 𝑦0 
(having a non-speech margin before the referenced part), 
allowing to compensate for the latency accumulated in the 
stretched part. This simplified result (Eqn. (11)) provides 
satisfactory outcomes in many situations. 

2.2 User Experiment: Speech Rate Preferences Noise 

2.2.1 Participants 

A total of 44 participants with bilateral hearing impairment 
took part in the study. Participants were categorized by the 
severity of their hearing loss (HL) [5]; mild HL (n = 23), 
moderate HL (n = 8), severe HL (n = 6), and profound HL (n 
= 7). All provided informed consent and completed an online 
auditory profile questionnaire prior to testing, including 
hearing loss characteristics, onset, stability, and type of 
hearing impairment. The experiments were conducted 
remotely, with participants using their own listening devices 
in a quiet home environment. Stimuli and Equipment 

2.2.2 Stimuli and Equipment 

Speech stimuli consisted of recordings of a professional 
female narrator in a studio environment. The narrator read 
aloud multiple pages from a novel, ensuring natural 
prosody and articulation. The speech stimuli were 
presented simultaneously with a separately recorded 
police siren. The speech and siren were mixed to create a 
controlled background noise condition, ensuring 
consistency across all participants. All audio files were 
presented in MP3 format (44,100 Hz, 32-bit sampling 
rate). Participants were instructed to use headphones or 
their regular hearing aids/cochlear implants (if applicable) 
and to avoid adjusting device settings during the 
experiment. For further information, see [5]. 

2.2.3 Procedure 

The experiment consisted of two phases. In the 
preliminary task, each participant determined their most 
comfortable level (MCL) for listening to speech in the 
presence of background noise. This was done using two 
pre-prepared audio files: one containing the narrated 

recordings and the other containing a constant-level 
police siren noise. The noise was played at a fixed 
intensity, while participants used a slider to adjust the 
intensity of the narrator’s voice until they reached the 
minimal SNR that allowed for comfortable speech 
understanding. 
Once the participant's individual SNR was determined, 
they proceeded to the main task, where they adjusted the 
speech rate of the narrator while listening under the same 
background noise conditions and using the SNR 
established in the preliminary phase. Participants used a 
sliding control to modify the recorded speech rate to the 
maximum speed at which they could still comprehend the 
story content. 

2.2.4 Data Collection and Analysis 

Data collection was conducted remotely via an online 
interface as described in [5]. Only participants who fully 
completed the experimental tasks were included in the 
analysis. An SPSS software was used for statistical 
analysis. Preferred speech rates (mean ± standard 
deviation) were calculated for each participant and group. 
A one-way analysis of variance (ANOVA) was conducted 
to assess whether speech rate preferences differed 
significantly between groups. Post hoc tests (Tukey’s 
HSD) were performed to evaluate pairwise differences. 
Effect sizes (η²) were calculated to quantify the magnitude 
of observed differences. 
 

3. RESULTS 

3.1 DAP System Outcomes 

Figures 2 and 3 illustrate qualitative examples of how DAP 
adjusts SNR and speech tempo over time. Figure 2 presents 
a snapshot of the DAP system in the time domain, over a 
short audio example. It shows the speech SNR adjustment 
obtained through the mixing gains, the speech rate 
measurement and the time-scale modification in term of 
accumulated latency. It is observed that the NU-TSM 
algorithm stretches the speech section (during the first 
second of the audio), followed by shortening the non-speech 
segment of the audio.  
Figure 3 presents an example of an audio recording 
containing a heated debate between two people. One can 
observe the time-scaling applied non-uniformly, where the 
pre-treated higher speech rates receive a larger stretch factor, 
while the pauses in the speech sections are shortened to 
compensate for the latency caused by the stretching process. 
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Thus, the maximum latency does not exceed a predefined 
limit of 𝐿 = 240 msec. This parameter can be adjusted 
according to user needs or even according to the audio 
content classification. 
Clearly, the effectiveness of NU-TSM is highly influenced 
by the allowable sync deviation and the structure of the 
speech segments. When a conversation or cinematic audio 
track includes sufficient pauses, users can experience 
improved intelligibility without perceiving noticeable 
synchronization issues. 

 
Figure 2. A snapshot of a processed audio example 
from the DAP system. The two upper plots describe 
the separated sources of ‘speech’ and ‘background’ 
(music and sound effects combined) with the gain 
factor (green and red gain curves) applied to 
emphasize speech. The third plot describes the 
approximated original speech rate, which is over 15 

PPS, and the bottom plot describes the time scale 
modification in terms of latency. The speech part is 
stretched by almost 20%, allowing a latency of 240 
msec, while the non-speech part is shortened to 
reduce the time latency. Notice that the line slope 
presents an effective scale factor. 

 
Figure 3. A snapshot of an audio recording of a 
heated debate. The target SNR is applied to most of 
the frames. Bursts of high speech rates exceed 15 
PPS, and the time-scaling is applied non-uniformly. 
The maximum time deviation is 240 msec - as 
predefined in the system setting.  
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3.2 User Experiment Speech Rate Preference in 
Background Noise 

Descriptive statistics for speech rate preferences in the 
presence of a background police siren are provided in 
Figure 4. Results show a general trend of decreasing 
preferred PPS with increasing hearing loss severity. 
Participants with mild HL preferred a mean PPS of 10.94, 
moderate HL preferred 10.42, severe HL preferred 9.30, 
whereas those with profound HL preferred a significantly 
slower rate of 8.51. On average, the preferred speech rate 
in background noise was 10.24 PPS. 
A one-way ANOVA revealed a statistically significant 
effect of hearing loss severity on preferred PPS [F(3,40) 
= 3.084, p = .038, η²=0.188]. Post hoc tests showed that 
the maximal preferred PPS for the perception of a female 
narrator speaking in background noise decreased 
significantly from mild to profound HL (-2.43 PPS, p = 
0.039). No other significant group differences were 
observed. 
These results suggest that individuals with greater hearing 
impairment prefer slower speech rates when background 
noise is present. Future studies should explore additional 
auditory factors influencing speech rate preference, such 
as spectral balance and dynamic range compression. 
 

 
Figure 4. Maximal Speech Rate Allowing Perception 
(in PPS) of a female narrator in background noise 
across different hearing loss groups (Mild, Moderate, 
Severe, Profound and Mean). Error bars represent the 
standard error of the mean. ⁎ Indicates a statistically 
significant difference between the marked groups (p 
< 0.05). 

4. DISCUSSION 

This paper suggests a basic and general description for an 
assistive audio processing system. The practical system is 

more complicated and is not detailed here. Since the final 
output of the system depends on a series of different 
modules, source separator, content classification, 
auditory-scene oriented logic of time-scale modification, 
and time-constrained stretching algorithm, many 
independent variables may affect it. Because of this 
complexity, it is difficult to quantitatively validate the 
most influencing factors as they are entangled together. 
Future user experiments should address this issue. It also 
seems that to examine the quality of different algorithms, 
further comparative experiments should be conducted to 
provide empirical quantitative analysis.  
While our study provides valuable primary insights about 
speech rate preferences in the presence of background 
noise, some limitations should be noted. First, hearing 
loss severity was self-reported rather than audiometrically 
verified, which may introduce variability in group 
classification. Future studies should incorporate objective 
hearing assessments to strengthen classification accuracy. 
Second, the experiment was limited to a single type of 
noise which in future experiments would be expanded to 
variable types of noise. The present study primarily 
examined speech intelligibility improvements. Additional 
research is needed to assess how DAP’s strategies affect 
non-speech content such as music or sound effects, 
especially in scenarios where the artistic intent or 
emotional impact of the audio track must be preserved. 

5. CONCLUSION 

This paper has introduced a personalized DAP framework 
that combines advanced source separation, content-aware 
mixing, and NU-TSM to enhance audio in both offline 
and real-time contexts. By leveraging machine learning 
for audio content classification, DAP enables targeted 
improvements in speech intelligibility, adaptable speech-
rate manipulation, and precise synchronization with 
visual media or other concurrent events. While the 
primary focus is on speech intelligibility, the underlying 
system can be adapted to enrich various user experiences 
- for example, by emphasizing a specific instrument or 
sound source. 
Crucially, our NU-TSM approach shows how 
intelligibility can be improved without exceeding 
predefined latency constraints. We also introduced a user 
study on speech-rate preferences in noisy environments, 
establishing baseline presets that reflect listeners’ 
auditory needs across different degrees of hearing loss. 
Although our findings suggest that DAP meets many user 
preferences, practical challenges persist - especially 
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regarding real-time processing demands and stringent 
latency requirements. 
Moreover, fully understanding users’ preferences and 
requirements necessitates subjective hearing experiments, 
due to the wide range of factors that shape listening 
experiences - hearing profiles, attention deficits, age, and 
content variability (e.g., music genres, cinematic audio, 
special effects). These complexities underscore the 
individualized nature of audio preferences and highlight 
the importance of extensive user-centric testing to capture 
diverse needs accurately. 
Future research will address these constraints and further 
refine personalized audio processing by exploring more 
robust adaptation strategies, investigating broader content 
types, and incorporating formal audiometric evaluations. 
Ultimately, this work lays the groundwork for a versatile 
DAP system capable of serving a wide audience with 
varied listening preferences and challenges. 
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