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ABSTRACT

This paper introduces a novel method for predicting tool
wear in CNC turning operations, combining ultrasonic
microphone arrays and convolutional neural networks
(CNNs). High-frequency acoustic emissions between
0kHz and 60 kHz are enhanced using beamforming tech-
niques to improve the signal-to-noise ratio. The processed
acoustic data is then analyzed by a CNN, which pre-
dicts the Remaining Useful Life (RUL) of cutting tools.
Trained on data from 350 workpieces machined with a
single carbide insert, the model can accurately predict the
RUL of the carbide insert. Our results demonstrate the po-
tential gained by integrating advanced ultrasonic sensors
with deep learning for accurate predictive maintenance
tasks in CNC machining.

Keywords: condition monitoring, predictive mainte-
nance, ultrasound signal processing, deep learning,
beamforming

1. INTRODUCTION

Predictive maintenance is the process of using sensor data
to infer the state of a machine, and detect flaws or failures
before they happen from that sensor data [1,2]. Predic-
tive maintenance is a rising trend in virtually all industry
branches, ranging from bearing fault detection [3], gear
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wear detection [4] or piston wear in reciprocating ma-
chines [5] amongst many other examples. A plethora of
sensors is being applied for predictive maintenance, rang-
ing from acoustics, vibration signals, thermal sensors, cur-
rent sensors, and virtually any other sensing modality that
can be imagined [1, 3]. In previous work, we demon-
strated bearing fault detection using ultrasound signals in
the band of 0 kHz to 60 kHz, measured with a microphone
array and subsequent beamforming techniques [6].

When machining complex parts with axis-symmetry,
CNC lathes are the de-facto standard manufacturing tech-
nique. In a CNC lathe, the work piece is mounted to a
spindle which is then being rotated, and cutting is per-
formed by means of a stationary cutting tool. There is a
wide variety of cutting tool geometry and materials, with
carbides being the dominantly used material for fabricat-
ing these cutting tools. While the variety in geometry and
material type is vast, one recurring and important feature
of these tools is the sharpness. Indeed, the sharpness of the
cutting tool often directly correlates to the finished qual-
ity of the workpiece [7,8]. A tool that is too dull will not
cut adequately, leaving a poor surface finish, while a tool
that is overly sharp is brittle and wears quickly. Manu-
facturers of CNC tools often specify a tool life parameter,
expressed in hours, which indicates how long a tool can be
utilized. However, these estimates are sometimes too con-
servative [7,9], and therefore lead to premature replace-
ment of still useful tools. Furthermore, some tools might
fail prematurely, causing problems in automated manu-
facturing applications, which results in scrapped parts and
lost revenue.

To combat the problem with tool wear inherent to
CNC machining, various techniques for automated tool
wear estimation have been devised [9, 10]. Similar as to
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the general field of predictive maintenance, a wide range
of sensing modalities is being used, such as consumed
spindle power/current [11], vibration measurements [12],
Doppler radar [13] and acoustics [14—16]. In many pre-
vious publications, combinations of these aforementioned
sensor modalities are used to perform the tool wear or tool
life prediction.

In this paper, we will focus on the use of ultrasonic
acoustic signals in the range of 0 kHz to 60kHz using
an array sensor, similar to our previous work on bearing
fault detection [6]. The sensor is based around our eRTIS
ultrasonic sensor [17] which allows the implementation
of broadband spatial filters through beamforming. Using
beamforming in high-noise scenarios such as CNC oper-
ations should improve the SNR of the signal, by filtering
out unwanted noise sources. We will use our eRTIS sen-
sor to measure the ultrasonic spectrogram acoustic signals
generated by the cutting operation, and use beamforming
to remove unwanted interference. Then, we will employ a
convolutional neural network to perform Remaining Use-
ful Life (RUL) prediction [18] of the cutting tool, using
data obtained from 350 work pieces turned using a single
carbide insert.

2. HARDWARE SETUP

In this section we will provide some details on the exper-
imental setup. We used an industrial CNC lathe (Mazak
QT10N), which is shown in figure 1 panel b). On this
lathe, we turned a batch of tensile test specimen used in
the mechanical engineering curriculum of our university
until tooling insert failure (350 pieces). The model of
this tensile test specimen can be seen in figure 1, panel
e). We used two materials for making these test pieces,
more specifically 1.1191 (C45) and 1.7225 (Chromoly),
distributed as randomly as possible during the produc-
tion run. We used a depth of cut of 0.3mm, a feed
rate of 0.5 mm per revolution and a surface speed of
120mmin~'. As tooling insert we used an Iscar GRIP
3015Y in grade IC808.

As ultrasonic sensors we used two eRTIS sensors
[17], which are ultrasonic microphone-array sensors with
32 microphones, sampled at 450 kHz. The individual sen-
sors are synchronized using our pseudo-random 1-bit syn-
chronization method described in [19]. One eRTIS sen-
sor was placed inside of the lathe, another outside right
where the operator would stand. In addition, we recorded
the spindle current using a Fluke 11000s current clamp,
connected to a National Instruments NI-USB6363 DAQ,
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which sampled both the current signal as well as the syn-
chronization signal at 500 kHz. The eRTIS sensors mea-
sured chunks of acoustic data of 40 ms at a rate of 10 Hz
(i.e., the signal is sampled intermittently).

3. SIGNAL PROCESSING AND EXPERIMENTAL
RESULTS

In this paper, we treat each eRTIS sensor independently -
i.e. there is no sensor fusion using multiple sensors. Each
sensor measures 32 microphone signals s, (t). These mi-
crophone signals are passed through a beamformer B,
pointing in direction v, which is the vector pointing from
the sensor to the tool position. The beamformed signals
are also filtered using a bandpass filter Ay, (¢), which is set
to be a Butterworth filter of order 6 between 0 kHz and
60 kHz. The overall output of each datasample of 40 ms
can then be calculated as:

Sot) = hap1) Z By (500

This output signal is then transformed to a magnitude
spectrum S, (w) using a Welch Power Spectral Density es-
timator, using a window length of 1024 samples and Ham-
ming weighting. In this spectrum S,,(w), the index n rep-
resents the frame number of that data section (sampled at
10 Hz, and 40 ms). These spectra are all concatenated into
a large matrix S, which then represents a spectrogram-like
representation:

(D

S(w,n) = |S1(w) S2(w) Sy (w) (2)
Examples of these spectrogram-like representations can
be seen in figure 2. Panel a) shows the spectrogram of
a run recorded using an eRTIS outside of the lathe, and
panel b) shows the spectrum recorded inside the machine.
The main difference between the data recorded by these
two sensors can be found in i) the low-frequency motion
sounds, which are more clearly visible in the spectrum
measured outside of the machine, and ii) the cutting noise,
which is high in frequency and more prominent in the data
in panel b). Both representations are shown on a logarith-
mic dB scale, normalized between 0dB and 90dB. One of
these spectrograms is recorded for each of the 350 pieces
that is being manufactured.

Finally, we implemented a convolutional neural net-
work which solves the following regression task: estimat-
ing the work-piece number based on a acoustic spectro-
gram data (ie, a number between 1 and 350). The CNN

11™* Convention of the European Acoustics Association
Milaga, Spain * 23" — 26" June 2025 *

SOCIEDAD ESPAROLA
SEA DE ACUSTICA



FORUM ACUSTICUM
ale EURONOISE

e/RTISV

Figure 1. Overview of the hardware setup used in this paper. Panel a) shows the eRTIS sensor, an ultrasonic
array sensor with 32 microphones arranged in a pseudorandom pattern. The sensor is waterproofed using a
membrane material from the Acoustic Protective Material line manufactured by W. L. Gore and Associates.
Panel b) shows the CNC lathe being used, a Mazak Quickturn 10N, using Iscar GRIP 3015Y grade IC808
inserts. Panel c) shows the inside eRTIS sensor mounted in the lathe. Panel d) shows the turned materials, and
e) shows the model of the piece that has been turned during this experiment.

is a standard feed-forward CNN with four convolutional
layers, leaky ReLu function, max pooling, layer normal-
ization and dropout (10 percent). After the four convolu-
tional layers the output gets flattened into a vector, and
passed through two fully connected (FC) layers, where
the first FC layer has an output dimension of 10 and a
ReLu nonlinearity, and the last FC layer has a single out-
put. We trained the neural network using the Adam opti-
mizer, with a learning rate of 0.01 for a maximum of 100
epochs, and used the best validation loss checkpoint as
the final network. We used data augmentation (shifting in
the time dimension and additive noise), and split the aug-
mented dataset randomly into a training set (75%), valida-
tion (10%) and test (15%) sets. In the ideal case, we would
perform this split before augmentation (or even use a com-
plete second run), which would required a more extensive
dataset, and that was not available at the time of writing.
Training of the CNN on a single NVidia RTX4090 took
around one hour, including data pre processing.

After training we used our test data to evaluate the
model’s performance, for which the results can be seen in
figure 4. In that figure, panel a) shows the run number pre-
diction based on a single acoustic spectrogram, and panel
b) shows the prediction when combining the predictions
of five spectrograms centered around the desired run num-
ber. Panels c) and d) show the mean run number prediction
error including the variance bands on the prediction (grey
shadows), in percentage of the total tool life. The maxi-
mum error of this prediction is plus or minus 6 percent of
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the total tool life when using the averaged result. This es-
timator allows tracking the health of the cutting tool, and
allows interventions or continued operation based on the
real-world state of tool sharpness. Including a window
around the current run number decreases the variance on
the estimation and estimation error, as is to be expected.

4. DISCUSSION AND CONCLUSION

In this paper, we showed a multi-modal sensor setup for
estimating tool wear in CNC turning operations. We dis-
cussed the data-acquisition process, and explained what
pre-processing steps were taken in data preparation. Sub-
sequently, we detailed the architecture of a convolutional
neural network which was applied to the prediction of re-
maining useful life of the CNC cutting insert. Using an
extensive dataset, consisting of 350 tensile test pieces in
two materials, we showed the performance of the regres-
sion capabilities of these CNNs. We showed that these
CNNss are able to estimate the tool life with a maximum
error of 6 percent within the total tool life, illustrating the
rich data that ultrasonic sensing provides to extract the rel-
evant metrics for predictive maintenance. In future work,
we will benchmark our approach to existing approaches in
the literature, and evaluate in detail which aspects of the
system are relevant: what advantages does a microphone
array bring, what benefit has a CNN, and how important
is the CNN architecture.

Furthermore, we will evaluate the problem of general-
izing this method to different machines/parts. The system
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Figure 2. Spectrogram representation of the acoustic
data recorded by the eRTIS sensors during a turning
run. Panel a) shows the data of measured by the eR-
TIS sensor ouside of the machine, and panel b) shows
the data recorded from inside the machine. In the low
frequency parts, the signal is dominated by the mo-
tion sounds of the machine, and the high frequency
parts of the spectrogram are generated by the cutting
operations.

as it is currently proposed, requires a training run for each
machine/part/tool combination. In industrial practice, this
is not a major hindrance, because each part is often run
over multiple weeks, and performing a single training run
on an insert is not a large hindrance. However, it would be
interesting to implement models which are capable of gen-
eralization. For this, larger datasets need to be captured on
different machines, making different parts, which is why
we classify this as future work.
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