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ABSTRACT

Auditory scene analysis (ASA) seeks to address com-
plex spatial audio tasks, including sound event detec-
tion (SED), direction of arrival estimation (DoAE), uni-
versal source separation (USS), and noise suppression
(NS). This study introduces Universal DeFT-Mamba, a
unified framework designed to tackle these challenges
using a deep neural network trained on diverse multi-
channel audio mixtures. The proposed architecture inte-
grates a transformer-based time-frequency attention net-
work with the Mamba-feedforward network (Mamba-
FFN), enabling it to simultaneously separate multichannel
audio mixtures into unmixed signals and estimate acous-
tic parameters for SELD and DoAE. To this end, the Uni-
versal DeFT-Mamba adopts group-wise processing for in-
dividual sound objects, and features separated for each
sound object are processed by the separation, SELD, and
DoA decoders to accomplish the multitask objectives. In
this way, permutation issues in aligning separated wave-
forms, event onsets/offsets, and DoAs can be naturally
suppressed. Experimental results demonstrate that Uni-
versal DeFT-Mamba achieves superior multichannel sep-
aration and SELD performance, surpassing the traditional
task-specific SELD network.
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1. INTRODUCTION

Auditory scene analysis (ASA) refers to the process of
organizing sound into perceptually meaningful elements,
such as the classification of individual audio sources, the
temporal localization of acoustic events, and the estima-
tion of their direction-of-arrival (DoA). Recently, a vari-
ety of deep learning models have been proposed for au-
dio classification, sound event detection, and DoA estima-
tion [1–4]. However, analyzing acoustic scenes in which
multiple sound sources overlap in the presence of back-
ground noise remains a challenging problem.

Sound event localization and detection (SELD) in-
volves simultaneously performing sound event detec-
tion (SED) and direction-of-arrival estimation (DoAE)
for individual sound sources in scenarios where mul-
tiple sources overlap. This task becomes particularly
challenging under conditions with in-class polyphony, in
which multiple sound sources of the same class overlap
in time [5]. Existing approaches typically estimate sound
events and their corresponding DoAs directly from the
mixed audio input using neural networks, making it dif-
ficult to effectively handle polyphonic audio as distinct
signals [6]. However, if individual sources can be suc-
cessfully separated, the resulting simplified ASA can sig-
nificantly improve overall performance.

On the other hand, universal sound separation (USS),
which aims to extract individual source signals from an
audio mixture, has recently attracted significant attention.
Compared to conventional separation tasks, USS is more
challenging due to variability in both the number and
classes of sound sources. Nevertheless, successful source
separation achieved through USS can considerably en-
hance SELD performance. The top-ranked model [7] of
DCASE 2023 Task 3 achieved a high performance by uti-
lizing the mixed audio features and concatenating the out-
puts of the separation model for each class as additional
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features. Also, in [8], high performance was obtained by
jointly addressing universal sound separation and poly-
phonic audio classification.

In this study, we propose a unified framework, Uni-
versal DeFT-Mamba, that can perform multichannel USS
and SELD tasks concurrently. The proposed frame-
work consists of the object separation network separating
object-level features of individual sound sources and sub-
decoders performing USS, SED, and DoAE tasks using
the separated object-level features. The object feature sep-
aration enables the consistent estimation of multiple tar-
gets without permutation ambiguity. We train and evalu-
ate the proposed method using the auditory scene analysis
(ASA) dataset generated through room simulation, which
contains multiple moving sources and diffuse noise. Ex-
perimental results demonstrate that the proposed frame-
work successfully accomplishes USS and SELD task ob-
jectives from a single model.

2. PROPOSED METHOD

The proposed research focuses on separating individual
sound sources in noisy, reverberant environments and sub-
sequently performing ASA using the separated sources.
The audio mixture consists of S moving foreground
source signals X and a single diffused background noise
V . A microphone array with M channels is placed in the
room to capture the audio mixture Y , and a deep learning
model is then employed to isolate the individual sound
sources. The multichannel USS task can be mathemat-
ically formulated as extracting individual source signals
Xm,s from the mixture given by

Ym(t, f) =

S∑
s=1

Xm,s(t, f) + Vm(t, f), (1)

where Ym(t, f), Xm,s(t, f), and Vm(t, f) are the multi-
channel spectrogram of the sound mixture, the reverber-
ant sound of the s-th source, and the noise captured by the
m-th microphone, respectively. Here, t = 1, · · · , T indi-
cates the time frame index, and f = 1, · · · , F represents
the frequency bin.

The proposed framework is illustrated in Fig. 1. In
this framework, the multichannel audio mixture is en-
coded into audio features, and the DeFT-Mamba [8] is em-
ployed as an object separation network to separate fore-
ground signals and suppress background noise (Fig. 2).

The object separation network is largely a combina-
tion of Hybrid Mamba blocks designed for the analy-
sis along the frequency and time dimensions. Each Hy-
brid Mamba block first analyzes features extracted from
two 1D convolution layers through the gating mecha-
nism in the Gated Convolution Block (GCB). The out-
put from GCB is processed by the transformer with Flash
Attention-2 [9], followed by the Mamba-FFN. This com-
bination of transformer with position-aware feedforward
network has demonstrated its outstanding performance in
the USS task [8]. The last Conv2d layer of the object sep-
aration network separates features corresponding to indi-
vidual objects.

Subsequently, the individual object features are
passed through an audio decoder, a class decoder, and a
DoA decoder to yield separated audio, predicted class la-
bels, and estimated DoA, respectively. The DoA is esti-
mated in form of a vector in cartesian coordinates, where
a vector length is used as an object presence indicator.
That is, the object with the DoA vector length greater
than 0.5 is considered as an active source to enable the
source event detection simultaneously. Compared to the
previous work [8], the primary extensions in this study
include generating a multichannel output with spatial in-
formation from the audio decoder and employing a DoA
decoder to estimate DoA and onsets/offsets of individual
sound sources in every time frame. To achieve these two
challenging goals, the model is trained to focus more on
spatial information essential in both audio separation and
DoA estimation tasks.

To train the model using data captured in diverse
acoustic environments, we employ the ASA dataset [8] re-
cently introduced in our previous work. The ASA dataset
includes spatialized multichannel audio signals simulated
for moving sources, whose source signals consist of 13
foreground source classes drawn from a publicly acces-
sible sound source database. The multichannel signals
are mixed with background noises adopted from the TAU-
SNoise dataset 1 , such that the signal-to-noise ratio (SNR)
ranges from 6 dB to 30 dB. The width and length of rooms
vary between 5 m and 8 m, with a height ranging between
3–4 m. The reverberation time of the rooms is between
0.2 s and 0.6 s. All of these parameters were sampled from
uniform distributions. The multichannel signals were sim-
ulated for a 4-channel tetrahedral microphone array with
a radius of 4.2 cm. The dataset is publicly available for

1 https://zenodo.org/records/6408611
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Figure 1: Overall framework of universal auditory scene analysis model for multichannel source separation,
event localization, and detection

Figure 2: Architecture of Object Separation Network (DeFT-Mamba) consisting of a gated convolution block
(GCB), multi-head self-attention (MHSA), and Mamba feedforward network (Mamba-FFN)

Table 1: Experimental result of universal auditory scene analysis (ASA dataset)

Model SI-SDRi (dB) ↑ SDRi (dB) ↑ ER (%) ↓ F1 (%) ↑ LE (◦) ↓ LR (%) ↑ SELD ↓
SELD-Net - - 51.5 48.1 31.2 54.2 0.416

Universal DeFT-Mamba 11.0 12.1 33.8 67.9 21.8 68.2 0.275

download at Zenodo 2 .

3. EXPERIMENT

The model was trained using a multi-task loss for audio,
classification, and DoA estimation. For source separation,

2 https://zenodo.org/records/13749621

the source-aggregated signal-to-distortion ratio (SA-SDR)
loss [10] was employed, enabling the separation of an ar-
bitrary number of sources. Cross entropy was used as the
classification loss, and mean squared error (MSE) was uti-
lized as the DoA loss. These losses were summed as a
joint loss function using the weights of 1, 0.1, and 0.01
for the MSEs of a reference microphone channel (mic 1),
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(a)

(b)
Figure 3: An example of universal auditory scene
analysis using the proposed architecture. (a) Sound
event detection and classification (b) DoA estimation

the MSEs of non-reference channels, and for the cross en-
tropy loss, respectively. Apart from these adjustments, all
other parameter settings were kept identical to those in the
previous study [8].

Tab. 1 compares the results of the baseline model and
the proposed architecture on the ASA dataset. Here, we
only consider the ASA dataset because other datasets, e.g.,
STARSS23 [11], do not provide the ground truth sig-
nals for the multichannel separation task. Most of the
conventional models have reported the performance on

Figure 4: Spectrograms of separated source signals.
(top row) Source 1 (bottom row) Source 2.

STARSS23 datasets, so we only utilize the open-source
model, SELD-Net [12], as the comparison baseline. The
comparison was made in terms of SELD performance
metrics, such as error rate (ER), F1 score (F1), localiza-
tion error (LE), localization recall (LR), and the SELD
score adopted from the evaluation criteria of DCASE 2023
Task 3 [11]. The experimental results show that the pro-
posed method achieves significantly higher performance
than the baseline model. Both models employ the same
decoders for classification and DoA estimation, but incor-
porating the multichannel object separation network with
the source separation objective makes a substantial dif-
ference in performance. The baseline model cannot sepa-
rate objects in polyphonic audio scenarios, so it often mis-
classifies classes and events, resulting in high error rates.
In contrast, the proposed method with Universal DeFT-
Mamba trained jointly with the multichannel separation
task shows robust SELD performance. Fig. 3a and Fig. 3b
present an example of universal auditory scene analysis
using the proposed architecture. In this example including
two overlapping sound objects, accurate event detection is
accomplished without interference between objects. The
DoA estimation, however, shows room for improvement,
displaying the DoA vector difference to the ground truth
DoA in the source-overlapping regions. The spectrograms
of separated source signals (Fig. 4) are also close to the
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ground truth spectrograms, except the slightly underesti-
mated spectral energy of the second source in the T-F bins
overlapping with the spectrogram of the first source.

4. CONCLUSION

This study proposes the Universal DeFT-Mamba frame-
work, which separates individual sound objects in multi-
channel audio and concurrently performs ASA tasks such
as sound event localization and detection. Experimental
results demonstrate superior separation and event detec-
tion performance compared with a conventional SELD-
Net, particularly in polyphonic audio scenarios where the
source separation contributes greatly to overall SELD per-
formance.
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