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ABSTRACT

Sound source classification is a valuable addition to
noise monitoring, providing further insights into local
soundscapes. For privacy preservation, this classification
often must be conducted on the edge, i.e., in real time on
noise sensors. This puts constraints on the size and
complexity of the classification models that can be used.
Furthermore, there is a trade-off between accuracy and
efficiency, which needs to be balanced on battery or
solar powered sensors. However, little is known about
this trade-off under consideration of constraints imposed
by such sensors. In this paper, we explore the scope of
sound classification models that can run efficiently on
low-cost sound sensors. Specifically, we investigate the
Pareto frontiers between model accuracy and
computational complexity, providing insights into the
trade-off necessary for deploying such models on very
constrained hardware. Building on these findings, we
train new classification models optimized for edge
devices. The models are trained on publicly available
audio samples and a new Dutch Urban Sounds dataset
specifically collected to enhance the accuracy of sound
source classification in urban environments. The models
and implementation are open source, enabling
researchers and practitioners to adopt, adapt, and build
upon our work.
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1. INTRODUCTION

Various studies have shown the importance of perception to
explain the human response to the urban soundscapel'.
Annoyance, as well as recreational effects of the sound
environment, depend not only on loudness but also on
various other indicators. One important factor is the
presence or absence of different sound sources. Bird song
may be perceived by most as pleasant, while traffic noise is
more likely to create a negative stress response. Machine
learning models can be used to predict the presence of such
sources. For privacy purposes, it is often necessary to run
such models on a sensor, which requires small and efficient
models.

While various papers propose such small models, few
consider the end-to-end performance on edge devices (e.g.,
execution time including preprocessing), and practical
constraints of microprocessors (such as limited for certain
deep learning architectures).

In this paper, we define various models and analyze the
trade-off between predictive performance and on-device
efficiency. This trade-off is very important for battery or
solar-powered sensors, as more efficient models result in
lower energy consumption. Lastly, three Pareto optimal
models along this trade-off are identified.

2. METHODS

The study follows the following steps: potential model
candidates are created based on constraints imposed by
microcontrollers. Then, these models are pretrained on
public datasets and finetuned to a new dataset on Urban
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Dutch Sounds. This dataset is then used to measure the
predictive performance of all models. The on-device
execution time of all models is measured as a proxy for
energy efficiency. Lastly, Pareto optimal models are
identified along the trade-off of predictive performance and
efficiency.

2.1 Microcontroller constraints

Microcontrollers are energy and cost-efficient and,
therefore, well-suited for low-cost or energy-constraint
noise sensors. Yet, these low-memory devices impose
several hardware and software limitations for machine
learning models on the edge.

One difference compared to a desktop computer is the
limited memory. Microcontrollers typically have less than
8MB RAM, which needs to be shared between sound
source classification and all other tasks. Therefore, the
model weights and any intermediate results and variables
must not occupy more than a few MB of memory. Another
difference is the limited processing speed, which is
important because edge Al requires sound to be processed
in real time. Thus, the classification time for a 3-second
audio sample must not exceed 3 seconds.

Besides hardware constraints, there are further limitations in
the support and optimization of certain ML operations.
While it is theoretically possible to implement and optimize
all required operations from scratch, this requires extensive
knowledge and effort, which is often ignored in literature
proposing very small ESC models. For this analysis, we
constrain the choice of machine learning models to those
that are supported and optimized for microcontrollers by
TensorFlow Lite Micro. This excludes Transformer models
and Long Short-Term Memory models.

Lastly, resampling audio is computationally expensive on
most microcontrollers. We assume that the proposed
models will run alongside a dB(A) calculation, which
benefits greatly from a high sample rate. Therefore, all
proposed models process audio sampled at 48 kHz.

2.2 Model candidates

Based on the constraints imposed by hardware and
software, a total of nine convolutional neural network
(CNN) candidates are evaluated. Specifically, three CNN
architectures with varying numbers of parameters are
combined with three Mel spectrogram sizes: 32, 64, and
104 Mels. All Mel spectrogram sizes are computed from
short-time furrier transforms (STFT) with a 1024 sample
window and hop rate. Table 1 lists the three CNN
architectures.

Table 1. Layers and number of filters for all three model
architectures. MaxPooling2D (2x2) follow each Conv2D
but were omitted. Flatten and Dropout layers were also
omitted from the table.

Number of filters in Conv2D
and units in dense layer

Layer Small Medium Large
Conv2D (3x3) 16 32 64
Conv2D (3x3) 16 48 64
Conv2D (3x3) 32 64 64
Conv2D (3x3) 32 64 96
Conv2D (3x3) 48 64 128
Dense 64 128 128
Dense (output) 11 11 11
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2.3 Datasets

All models were pretrained on public datasets and then
finetuned and evaluated on recently collected sound
samples from the Netherlands.

To cover a variety of sounds, samples from the following
datasets have been combined for the pretraining of all
models: Google’s AudioSet™, ESC-50), UrbanSound8K™,
SONYC-USTP! and Amsterdam Sounds Serval®'.

Some samples do not contain any of the selected sound
classes but have been included to ensure that other audio
sources are not mistaken for the sources considered here
(i.e., to reduce false positives).

2.3.1 Dutch Urban Sounds

In addition to the existing datasets, a novel dataset has been
collected to improve the prediction performance of sound
source classification in an urban context. These 3-second
samples have been collected in the Dutch cities Amsterdam
and Leiden. Ideally, the microphone used for training data
collection should be the same microphone that will be used
in a noise sensor running the model. Otherwise, differences
in microphones might bias the model predictions. This
dataset has been recorded with a TDK ICS-434 MEMS
microphone, which is well-suited for noise sensors.
Finetuning the candidate models to these samples is
expected to improve real world accuracy, as publicly
available datasets such as Google AudioSet can have poor
data quality and do not necessarily reflect real world
conditions. Other datasets such as SONY-UST are collected
in a realistic setting, but specific to the American context.
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Table 2. Audio datasets and occurrences of relevant sound classes per dataset.

AudioSet | SONY-UST | Jrban ESC-50 An':‘;t:rrv“; buteh Iroah | Total

Samples 33,220 18,509 8,730 2,000 1,629 1,727 | 65,815
Vehicle 7,790 10,025 1,000 40 863 405 | 20,123
Honking 2,043 2,382 428 40 132 18 5,043
Aircraft 2,811 - - 80 - 40 | 2,931
Siren 2,443 1,502 929 40 - 190 5,104
Human 10,310 7,254 1,000 40 634 585 | 19,823
Bark 843 1,114 999 40 - 61 3,057
Bird song 2,485 - - 40 - 271 | 2,796
Church Bell 1,089 - - 40 - 52 1,181
Music 6,886 1,627 1,000 - - 133 9,646
Wind 2,322 - - 40 - 457 2,819
Rain 1,145 - - 40 - 104 1,289

Table 2 shows the number of samples per sound class for
each dataset. AudioSet, SONY-UST, and Dutch Urban
Sounds are multilabel datasets, meaning each sound class
can occur more than once per sample.

2.4 Evaluation procedure

All models are pretrained on the mentioned public datasets.
Then, each model is finetuned with 5-fold cross-validation
on our Dutch Urban Sounds dataset. This dataset is
imbalanced (i.e., some sound classes are sparser than
others). Therefore, we evaluate the prediction performance
using macro precision, recall, and F1. Micro metrics
consider all samples equally, while macro metrics consider
all sound classes equally. The latter is more suitable for this
imbalanced dataset because the real-world class distribution
likely differs from the dataset’s distribution. To balance
precision and recall, the macro F1 score is used as the final
indicator of model performance.

An optimal model not only needs to be accurate but also
computationally efficient. Slower models with longer
execution times require stronger hardware and lead to an
increased energy consumption. Therefore, an optimal
model is always a trade-off between prediction performance
(e.g., accuracy or F1 score) and efficiency. We measure
efficiency as the total time to run the prediction pipeline on
the sensor (execution time). The pipeline contains
preprocessing and the ML inference itself. The on-device
execution time is also a good proxy for energy
consumption.

Measuring both prediction performance and efficiency
allows us to find models that are Pareto optimal. A model is

considered Pareto optimal if no other model performs better
in one metric (e.g, F1 score or efficiency) without
performing worse in the other, meaning it offers an optimal
trade-off between the two.

3. RESULTS AND DISCUSSION

Table 3 lists macro precision, recall and F1 scores over all
classes. As discussed, the macro F1 scores are used to
determine the best predicting model.

The medium and large 104 Mel models achieve the same
macro F1 scores. This may be caused by the imbalanced
and relatively small finetuning dataset, which may lead to
overfitting of large models. The worst model based on
macro F1 is the small 32 Mel model.

Table 3. Macro precision, recall, and F1 scores for all
model candidates.
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Model Macro
Architecture | Mels | Precision | Recall F1

Small 32 74.41% | 52.38% | 59.96%
Small 64 76.89% | 55.80% | 63.41%
Small 104 73.34% | 54.30% | 61.38%
Medium 32 70.38% | 55.82% | 61.90%
Medium 64 73.30% | 56.17% | 62.52%
Medium 104 76.27% | 58.46% | 65.69%
Large 32 70.33% | 55.99% | 61.97%
Large 64 75.04% | 58.23% | 64.77%
Large 104 76.07% | 59.05% | 65.69%
SE"“R?FES.?;AE‘I“
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Prediction performance alone, however, is not sufficient to
identify an optimal model for resource constraint edge Al.
Therefore, we now discuss the on-device speed of each
model.
The execution time refers to the overall time required to
make a sound source prediction on the sensor. In this case,
time was measured on an ESP32-S3 running at 240 MHz.
Continuous monitoring of soundscapes requires the
execution time for processing of n-seconds audio to not
surpass n-seconds. In this case, each audio sample is 3
seconds long. Table 4 shows that all but the Large 104 Mel
models fulfill the real-time requirement. The table further
shows that architecture size is more important than input
size (which depends on the number of Mels) for the
execution time of the candidate models. Preprocessing
(creation of Mel spectrograms) poses a significant overhead
for smaller models but less so for larger models. This is due
to the computational expense of short-term furrier
transforms (STFT), which is independent of the number of
Mels. Only the conversion to Mels varies but is less
computationally demanding than STFT.

Table 4. Execution time (including preprocessing and ML
inference) for the model candidates.

Model Execution time (ms)

Architecture |Mels| Preprocessing | Inference | Total
Small 32 107 79| 186
Small 64 113 155| 268
Small 104 118 250 368
Medium 32 107 239| 346
Medium 64 113 476 | 589
Medium 104 118 759| 877
Large 32 107 1,040 (1,147
Large 64 113 2,069 (2,182
Large 104 118 3,844 (3,962

After considering predictive performance and efficiency
(represented by execution time) individually, we now
discuss the trade-offs between both metrics.

The ideal trade-off depends on the specific use case and
design requirements. Therefore, there is no universally
best trade-off. Instead, we look at multiple Pareto
optimal models along this trade-off, which form the

Pareto front.
Figure 1 compares the total execution time and Macro

F1 scores of all models.

Three models are Pareto

optimal, namely the small architecture with 32 Mels, the
small architecture with 64 Mels, and the medium
architecture with 104 Mels. The large architecture with
104 Mels does not fulfill the requirements of a Pareto
optimal model because the medium architecture with
104 Mels has a better execution time for the same Macro
F1 score. The remaining models are also inferior to at
least one of the Pareto optimal models and can be
rejected.

The three Pareto optimal models contain between 46,379
and 281,147 model weights and occupy between 58 and
296 KB of memory after quantization.
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Figure 1. Total execution time and Macro F1 scores of

all models and their Pareto front.

For training similar models on other datasets, it is
recommended to repeat the Pareto analysis as the model
candidates may perform differently depending on the
dataset characteristics.

To provide a reference point for model performance, we
compare the models with the state-of-the-art Audio
Spectrogram Transformer!”! (AST) after also finetuning
it on our Dutch Urban Sounds dataset. The AST reached
a Macro F1 score of 74.87%. While this surpasses the
best-performing model of this paper, the AST is also
significantly larger (86,197,259 parameters). The
finetuned AST is more than 300 times bigger than our
largest Pareto optimal model and unsuitable for
microprocessors.

Further research is necessary to compare our Pareto
optimal models with other approaches, such as a training
pipeline proposed by Mohaimenuzzaman!®l,
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4. CONCLUSION

Microprocessors impose various practical constraints on the
choice of machine learning models due to hardware
limitations or missing support and optimization for various
deep learning architectures. This currently prohibits the use
of Transformer and LSTM models with ML libraries such
as TensorFlow Lite Micro.

Therefore, nine convolutional neural networks were
compared regarding the trade-off between model
performance (measured via Macro F1 scores) and
efficiency (measured as total execution time). The most
complex model did not fulfill real-time requirements but
was also not found to be optimal. Instead, three Pareto-
optimal models have been identified, each representing a
different optimal trade-off between F1 score and efficiency.
The analysis shows the importance of considering
efficiency in addition to model performance, as all six non-
optimal models would lead to either more computational
cost or less accurate sound source predictions. All three
Pareto optimal models are openly available on GitHub' and
can be used on microcontrollers supported by TensorFlow
Lite Micro.
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