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ABSTRACT* 

Sound source classification is a valuable addition to 

noise monitoring, providing `further insights into local 

soundscapes. For privacy preservation, this classification 

often must be conducted on the edge, i.e., in real time on 

noise sensors. This puts constraints on the size and 

complexity of the classification models that can be used. 

Furthermore, there is a trade-off between accuracy and 

efficiency, which needs to be balanced on battery or 

solar powered sensors. However, little is known about 

this trade-off under consideration of constraints imposed 

by such sensors. In this paper, we explore the scope of 

sound classification models that can run efficiently on 

low-cost sound sensors. Specifically, we investigate the 

Pareto frontiers between model accuracy and 

computational complexity, providing insights into the 

trade-off necessary for deploying such models on very 

constrained hardware. Building on these findings, we 

train new classification models optimized for edge 

devices. The models are trained on publicly available 

audio samples and a new Dutch Urban Sounds dataset 

specifically collected to enhance the accuracy of sound 

source classification in urban environments. The models 

and implementation are open source, enabling 

researchers and practitioners to adopt, adapt, and build 

upon our work. 
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1. INTRODUCTION 

Various studies have shown the importance of perception to 

explain the human response to the urban soundscape[1]. 

Annoyance, as well as recreational effects of the sound 

environment, depend not only on loudness but also on 

various other indicators. One important factor is the 

presence or absence of different sound sources. Bird song 

may be perceived by most as pleasant, while traffic noise is 

more likely to create a negative stress response. Machine 

learning models can be used to predict the presence of such 

sources. For privacy purposes, it is often necessary to run 

such models on a sensor, which requires small and efficient 

models.  

While various papers propose such small models, few 

consider the end-to-end performance on edge devices (e.g., 

execution time including preprocessing), and practical 

constraints of microprocessors (such as limited for certain 

deep learning architectures). 

In this paper, we define various models and analyze the 

trade-off between predictive performance and on-device 

efficiency. This trade-off is very important for battery or 

solar-powered sensors, as more efficient models result in 

lower energy consumption. Lastly, three Pareto optimal 

models along this trade-off are identified. 

2. METHODS 

The study follows the following steps: potential model 

candidates are created based on constraints imposed by 

microcontrollers. Then, these models are pretrained on 

public datasets and finetuned to a new dataset on Urban 
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Dutch Sounds. This dataset is then used to measure the 

predictive performance of all models. The on-device 

execution time of all models is measured as a proxy for 

energy efficiency. Lastly, Pareto optimal models are 

identified along the trade-off of predictive performance and 

efficiency. 

2.1 Microcontroller constraints 

Microcontrollers are energy and cost-efficient and, 

therefore, well-suited for low-cost or energy-constraint 

noise sensors. Yet, these low-memory devices impose 

several hardware and software limitations for machine 

learning models on the edge.  

One difference compared to a desktop computer is the 

limited memory. Microcontrollers typically have less than 

8MB RAM, which needs to be shared between sound 

source classification and all other tasks. Therefore, the 

model weights and any intermediate results and variables 

must not occupy more than a few MB of memory. Another 

difference is the limited processing speed, which is 

important because edge AI requires sound to be processed 

in real time. Thus, the classification time for a 3-second 

audio sample must not exceed 3 seconds. 

Besides hardware constraints, there are further limitations in 

the support and optimization of certain ML operations. 

While it is theoretically possible to implement and optimize 

all required operations from scratch, this requires extensive 

knowledge and effort, which is often ignored in literature 

proposing very small ESC models. For this analysis, we 

constrain the choice of machine learning models to those 

that are supported and optimized for microcontrollers by 

TensorFlow Lite Micro. This excludes Transformer models 

and Long Short-Term Memory models. 

Lastly, resampling audio is computationally expensive on 

most microcontrollers. We assume that the proposed 

models will run alongside a dB(A) calculation, which 

benefits greatly from a high sample rate. Therefore, all 

proposed models process audio sampled at 48 kHz. 

2.2 Model candidates 

Based on the constraints imposed by hardware and 

software, a total of nine convolutional neural network 

(CNN) candidates are evaluated. Specifically, three CNN 

architectures with varying numbers of parameters are 

combined with three Mel spectrogram sizes: 32, 64, and 

104 Mels. All Mel spectrogram sizes are computed from 

short-time furrier transforms (STFT) with a 1024 sample 

window and hop rate. Table 1 lists the three CNN 

architectures.  

Table 1. Layers and number of filters for all three model 

architectures. MaxPooling2D (2x2) follow each Conv2D 

but were omitted. Flatten and Dropout layers were also 

omitted from the table. 

 

Number of filters in Conv2D 

and units in dense layer 

Layer Small Medium Large 

Conv2D (3x3) 16 32 64 

Conv2D (3x3) 16 48 64 

Conv2D (3x3) 32 64 64 

Conv2D (3x3) 32 64 96 

Conv2D (3x3) 48 64 128 

Dense 64 128 128 

Dense (output) 11 11 11 

2.3 Datasets 

All models were pretrained on public datasets and then 

finetuned and evaluated on recently collected sound 

samples from the Netherlands. 

To cover a variety of sounds, samples from the following 

datasets have been combined for the pretraining of all 

models: Google’s AudioSet[2], ESC-50[3], UrbanSound8K[4], 

SONYC-UST[5] and Amsterdam Sounds Serval[6].  

Some samples do not contain any of the selected sound 

classes but have been included to ensure that other audio 

sources are not mistaken for the sources considered here 

(i.e., to reduce false positives). 

2.3.1 Dutch Urban Sounds 

In addition to the existing datasets, a novel dataset has been 

collected to improve the prediction performance of sound 

source classification in an urban context. These 3-second 

samples have been collected in the Dutch cities Amsterdam 

and Leiden. Ideally, the microphone used for training data 

collection should be the same microphone that will be used 

in a noise sensor running the model. Otherwise, differences 

in microphones might bias the model predictions. This 

dataset has been recorded with a TDK ICS-434 MEMS 

microphone, which is well-suited for noise sensors.  

Finetuning the candidate models to these samples is 

expected to improve real world accuracy, as publicly 

available datasets such as Google AudioSet can have poor 

data quality and do not necessarily reflect real world 

conditions. Other datasets such as SONY-UST are collected 

in a realistic setting, but specific to the American context. 
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Table 2. Audio datasets and occurrences of relevant sound classes per dataset. 

 AudioSet SONY-UST 
Urban 

Sound 8K 
ESC-50 

Amsterda

m Serval 

Dutch Urban 

Sounds 
Total 

Samples 33,220 18,509 8,730 2,000 1,629 1,727 65,815 

Vehicle 7,790 10,025 1,000 40 863 405 20,123 

Honking 2,043 2,382 428 40 132 18 5,043 

Aircraft 2,811 - - 80 - 40 2,931 

Siren 2,443 1,502 929 40 - 190 5,104 

Human 10,310 7,254 1,000 40 634 585 19,823 

Bark 843 1,114 999 40 - 61 3,057 

Bird song 2,485 - - 40 - 271 2,796 

Church Bell 1,089 - - 40 - 52 1,181 

Music 6,886 1,627 1,000 - - 133 9,646 

Wind 2,322 - - 40 - 457 2,819 

Rain 1,145 - - 40 - 104 1,289 

 

Table 2 shows the number of samples per sound class for 

each dataset. AudioSet, SONY-UST, and Dutch Urban 

Sounds are multilabel datasets, meaning each sound class 

can occur more than once per sample. 

2.4 Evaluation procedure 

All models are pretrained on the mentioned public datasets. 

Then, each model is finetuned with 5-fold cross-validation 

on our Dutch Urban Sounds dataset. This dataset is 

imbalanced (i.e., some sound classes are sparser than 

others). Therefore, we evaluate the prediction performance 

using macro precision, recall, and F1. Micro metrics 

consider all samples equally, while macro metrics consider 

all sound classes equally. The latter is more suitable for this 

imbalanced dataset because the real-world class distribution 

likely differs from the dataset’s distribution. To balance 

precision and recall, the macro F1 score is used as the final 

indicator of model performance. 

An optimal model not only needs to be accurate but also 

computationally efficient. Slower models with longer 

execution times require stronger hardware and lead to an 

increased energy consumption. Therefore, an optimal 

model is always a trade-off between prediction performance 

(e.g., accuracy or F1 score) and efficiency. We measure 

efficiency as the total time to run the prediction pipeline on 

the sensor (execution time). The pipeline contains 

preprocessing and the ML inference itself. The on-device 

execution time is also a good proxy for energy 

consumption. 

Measuring both prediction performance and efficiency 

allows us to find models that are Pareto optimal. A model is 

considered Pareto optimal if no other model performs better 

in one metric (e.g., F1 score or efficiency) without 

performing worse in the other, meaning it offers an optimal 

trade-off between the two. 

3. RESULTS AND DISCUSSION 

Table 3 lists macro precision, recall and F1 scores over all 

classes. As discussed, the macro F1 scores are used to 

determine the best predicting model. 

The medium and large 104 Mel models achieve the same 

macro F1 scores. This may be caused by the imbalanced 

and relatively small finetuning dataset, which may lead to 

overfitting of large models. The worst model based on 

macro F1 is the small 32 Mel model. 

 

Table 3. Macro precision, recall, and F1 scores for all 

model candidates. 

Model Macro 

Architecture Mels Precision Recall F1 

Small 32 74.41% 52.38% 59.96% 

Small 64 76.89% 55.80% 63.41% 

Small 104 73.34% 54.30% 61.38% 

Medium 32 70.38% 55.82% 61.90% 

Medium 64 73.30% 56.17% 62.52% 

Medium 104 76.27% 58.46% 65.69% 

Large 32 70.33% 55.99% 61.97% 

Large 64 75.04% 58.23% 64.77% 

Large 104 76.07% 59.05% 65.69% 
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Prediction performance alone, however, is not sufficient to 

identify an optimal model for resource constraint edge AI. 

Therefore, we now discuss the on-device speed of each 

model.  

The execution time refers to the overall time required to 

make a sound source prediction on the sensor. In this case, 

time was measured on an ESP32-S3 running at 240 MHz. 

Continuous monitoring of soundscapes requires the 

execution time for processing of n-seconds audio to not 

surpass n-seconds. In this case, each audio sample is 3 

seconds long. Table 4 shows that all but the Large 104 Mel 

models fulfill the real-time requirement. The table further 

shows that architecture size is more important than input 

size (which depends on the number of Mels) for the 

execution time of the candidate models. Preprocessing 

(creation of Mel spectrograms) poses a significant overhead 

for smaller models but less so for larger models. This is due 

to the computational expense of short-term furrier 

transforms (STFT), which is independent of the number of 

Mels. Only the conversion to Mels varies but is less 

computationally demanding than STFT.   

 

Table 4. Execution time (including preprocessing and ML 

inference) for the model candidates. 

Model Execution time (ms) 

Architecture Mels Preprocessing Inference Total 

Small 32 107 79 186 

Small 64 113 155 268 

Small 104 118 250 368 

Medium 32 107 239 346 

Medium 64 113 476 589 

Medium 104 118 759 877 

Large 32 107 1,040 1,147 

Large 64 113 2,069 2,182 

Large 104 118 3,844 3,962 

 

After considering predictive performance and efficiency 

(represented by execution time) individually, we now 

discuss the trade-offs between both metrics. 

The ideal trade-off depends on the specific use case and 

design requirements. Therefore, there is no universally 

best trade-off. Instead, we look at multiple Pareto 

optimal models along this trade-off, which form the 

Pareto front. 

Figure 1 compares the total execution time and Macro 

F1 scores of all models. Three models are Pareto 

optimal, namely the small architecture with 32 Mels, the 

small architecture with 64 Mels, and the medium 

architecture with 104 Mels. The large architecture with 

104 Mels does not fulfill the requirements of a Pareto 

optimal model because the medium architecture with 

104 Mels has a better execution time for the same Macro 

F1 score. The remaining models are also inferior to at 

least one of the Pareto optimal models and can be 

rejected. 

The three Pareto optimal models contain between 46,379  

and 281,147 model weights and occupy between 58 and 

296 KB of memory after quantization. 

 

 
Figure 1. Total execution time and Macro F1 scores of 

all models and their Pareto front.  

 

For training similar models on other datasets, it is 

recommended to repeat the Pareto analysis as the model 

candidates may perform differently depending on the 

dataset characteristics. 

To provide a reference point for model performance, we 

compare the models with the state-of-the-art Audio 

Spectrogram Transformer[7] (AST) after also finetuning 

it on our Dutch Urban Sounds dataset. The AST reached 

a Macro F1 score of 74.87%. While this surpasses the 

best-performing model of this paper, the AST is also 

significantly larger (86,197,259 parameters). The 

finetuned AST is more than 300 times bigger than our 

largest Pareto optimal model and unsuitable for 

microprocessors.  

Further research is necessary to compare our Pareto 

optimal models with other approaches, such as a training 

pipeline proposed by Mohaimenuzzaman[8]. 

2282



11th Convention of the European Acoustics Association 
Málaga, Spain • 23rd – 26th June 2025 •  

 

 

4. CONCLUSION 

Microprocessors impose various practical constraints on the 

choice of machine learning models due to hardware 

limitations or missing support and optimization for various 

deep learning architectures. This currently prohibits the use 

of Transformer and LSTM models with ML libraries such 

as TensorFlow Lite Micro. 

Therefore, nine convolutional neural networks were 

compared regarding the trade-off between model 

performance (measured via Macro F1 scores) and 

efficiency (measured as total execution time). The most 

complex model did not fulfill real-time requirements but 

was also not found to be optimal. Instead, three Pareto-

optimal models have been identified, each representing a 

different optimal trade-off between F1 score and efficiency.  

The analysis shows the importance of considering 

efficiency in addition to model performance, as all six non-

optimal models would lead to either more computational 

cost or less accurate sound source predictions. All three 

Pareto optimal models are openly available on GitHub1 and 

can be used on microcontrollers supported by TensorFlow 

Lite Micro. 
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