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ABSTRACT* 

One of the main challenges for users applying an AOTF as a 

commercial off-the-shelf component for optical wavelength 

filtering, is the lack of detailed manufacturing information on 

critical parameters. Information such as diffraction angles, 

the precise RF driving frequencies required for momentum-

matching conditions, as well as the data for each wavelength 

across a certain optical spectrum is not always easily 

available. To obtain this information, users must perform 

physical tests to configure the optimal frequencies, 

diffraction angles, and incidence angles for each wavelength 

of interest which is labor-intensive and costly.  

This research uses an optimization algorithm applied to an 

analytical model which can characterize key angles related 

to the AOTF’s crystallographic axis, such as the 

crystallographic axis angle θc, the tilt-angle α, as well as facet 

inclination angles β and γ. First, diffraction testing on an 

AOTF is done, by recording both output ray angles and the 

momentum-matching frequency. Then the optimization 

algorithm is chosen and applied to the analytical model to 

determine the optimal parameters for θc, α, γ, and β. With 

these parameters, the AOTF’s behavior can be extrapolated 

to multiple wavelengths, which not only saves time, but also 

enables more versatile planning of optical setups.. 
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1. INTRODUCTION 

Acousto-Optic Tunable Filters (AOTFs) make use of 

acoustic waves to manipulate the diffraction of light within a 

transparent crystal. These versatile devices are employed in 

various fields, such as ground- and space-based spectroscopy 

[1, 2] and network applications [3]. AOTFs are compact 

solid-state devices that filter desired optical wavelengths by 

applying an appropriate Radio-Frequency (RF) signal. Their 

compactness, robustness and quick tunability enables fast, 

efficient, and precise control over the spectral properties of 

light. AOTFs allow for the selective transmission or blocking 

of specific optical wavelengths, which makes them 

particularly appealing for space-based missions [4].  

To operate AOTFs and regulate light diffraction at a specific 

optical wavelength, a transducer is mounted to the side of a 

transparent crystal, such as TeO₂ or quartz. This transducer 

converts RF signals of a designated frequency and power 

into sound waves [5]. Applying the appropriate frequency 

and power level, the Bragg matching condition can be 

satisfied, enabling two first-order diffracted light beams 

emitting at the crystal's output [6]. 

Using commercial off-the-shelf (COTS) AOTFs in an 

optical setup comes with certain challenges. Mostly the 

information provided on critical parameters in order to have 

an optimal functioning AOTF, is limited.  

The aim of this paper is to present an optimization 

algorithm, using an analytical model, in order to 

characterize the AOTF’s crystallographic axis angle θc, 

the tilt-angle α, as well as facet inclination angles β and γ 

(Fig. 1). Therefore, first a diffraction testing is done using 
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a COTS AOTF working in the optical visible domain. 

Both output ray angles are recorded, together with the 

momentum-matching frequency. Additionally, a 

developed optimization algorithm is applied to the 

analytical model, providing the parameters θc, α, γ, and β.  

 

 
Figure 1. AOTF setup and positioning of the global 

(black) and crystallographic (blue) coordinate systems. 

2. AOTF PARAMETER CHARACTERIZATION 

APPROACH 

The optimization algorithm requires the analytical 

model’s outputs in order to find optimal values that can 

characterize the main AOTF angles.. First, this model is 

briefly explained, followed by experimental diffraction 

tests. Consequently, the algorithm is applied to the model 

and the AOTF characterization parameters are obtained. 

2.1 Analytical model 

The goal of the analytical model is to provide as an output 

the undiffracted ray’s optical path through the AOTF, as 

well as ray tracing of the diffracted ray, accompanied with 

the frequency signal required for the momentum-

matching condition. 

The model is based on the approach proposed by Zhao et 

al. [7], where the AOTF is split into three different 

surfaces, namely the AOTF entrance surface, the acoustic 

field and the exit surface (see Fig. 1). Using Directional 

Cosine Matrices (DCM) in 3D provides the baseline for 

the Python-based analytical model used in this research. 

This model has been broken down into more substages 

and uses adapted mathematical expressions in comparison 

to Zhao et al. [7], allowing a broad range of optical 

wavelengths in which the model is applicable.  

2.2 Experimental diffraction tests 

In this section, diffraction testing on a TeO2 COTS AOTF 

(550 – 1000 nm) was carried out by recording both output 

ray angles, the rotational angle of the AOTF and the 

momentum-matching frequency. A vertically polarized 

635 nm laser light is applied to the AOTF via a polarizer 

and an iris (Fig. 2). The diffraction occurred only when a 

vertically polarized light was shone, using a 145 MHz RF 

signal applied to the AOTF transducer. This RF signal 

was generated using a lab RF generator and amplifier 

setup. 

 

 
Figure 2. AOTF diffraction test setup with ζrot is the 

rotational angle, θ3o is the ordinary undiffracted ray 

angle and θ3e is the extraordinary diffracted ray. 
 

An example of this diffraction is shown in Fig. 3, where 

the diffracted light appears faint to the left of the 

undiffracted light. The dimness of the diffracted light is 

due to the RF power being set at 100 mW.  

 

 
Figure 3. AOTF diffraction when a vertically polarised 

light is shone onto the AOTF. 
 

The momentum-matching frequency was determined, by 

rotating the AOTF over a limited range (from -2 degrees 
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to 8 degrees, compared to the incoming light beam) using 

the rotational stage (Fig. 2 and 3). The accompanying 

diffracted and undiffracted rays angles θ3o and θ3e were 

also recorded by detecting the peak diffracted ray 

intensity.  

2.3 Algorithm selection  

To integrate the developed analytical model with an 

optimization algorithm, the first step was to identify a 

suitable algorithm. The approach involved selecting an 

existing method and adapt the analytical model accordingly. 

Given that the model was implemented in Python and 

involved multiple variables influencing the results, the 

selection was limited to multi-variable optimization 

algorithms available in SciPy. The “L-BFGS-B” algorithm 

(Limited-memory Broyden-Fletcher-Goldfarb-Shanno) was 

chosen due to its suitability for multi-variable nonlinear 

problems and its computational efficiency compared to other 

quasi-Newton methods [8]. Moreover, this algorithm 

supports box constraints, allowing for straightforward 

boundary conditions on variables (θc, α, γ, β).  

Quasi-Newton methods aim to find a local minimum by 

approximating the curvature of the objective function, 

focusing on values where the function approaches a local 

minimum [8]. To determine the curvatures for each search 

variable, these methods typically rely on an inverse Hessian 

matrix [9], containing the second-order partial derivatives. 

However, calculating a full Hessian becomes increasingly 

time-consuming as the number of variables (n) grows [10]. 

To address this, the limited-memory approach estimates the 

Hessian matrix using only recent search iterations, rather 

than each time recalculating it from scratch [10]. A detailed 

mathematical explanation of how this algorithm works is 

beyond the scope of this research. The primary reason for 

selecting this algorithm is its computational efficiency in 

solving multi-variable problems and its ease of 

implementation in Python through the SciPy library, which 

also supports simplified variable constraints. Furthermore, 

the algorithm is relatively effective in finding a global 

minimum (optimal value) of the objective function [10].  

 

 
Figure 4. Simplified multimodal example where 

finding global minimum is challenging for Newton 

methods. 
 

However, L-BFGS-B can become trapped in local minima, 

as shown in Fig. 4. This is an example of an objective 

function with a single variable n demonstrating this 

limitation [10]. To address this, running the algorithm 

multiple times with different initial guesses can improve the 

chances of finding the global minimum.  

In contrast, genetic algorithms are generally more effective 

at locating the global minimum in such cases. Nevertheless, 

they are more complex to implement, requiring constraints 

within the objective function, and often come with higher 

computational costs [11, 12]. Due to these factors, genetic 

algorithms were not considered in this study but are 

recommended for future research. 

2.4 Objective function and bounds selection 

With the L-BFGS-B algorithm selected, the next step is to 

define its input for optimization. The primary input is the 

objective function — a scalar function that the algorithm 

seeks to minimize [10]. The objective is to reduce the 

discrepancy between the experimental measurements from 

the COTS AOTF diffraction testing and the predictions from 

the analytical model. This discrepancy is quantified as a total 

error, formulated in Eqn. 1 as the objective function. This 

represents the sum of squared errors for momentum-

matching frequency and diffracted/undiffracted angles. 

 

𝐸𝑡𝑜𝑡 = 𝐸𝑓𝑟𝑒𝑞 + 𝐸𝑑𝑖𝑓𝑓 + 𝐸𝑢𝑛𝑑𝑖𝑓𝑓  (1) 

 

Where each term is defined as follows: 

 

𝐸𝑓𝑟𝑒𝑞 = ∑ (𝑓
𝑖
𝑒𝑥𝑝 − 𝑓

𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1     (2) 
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𝐸𝑑𝑖𝑓𝑓 = ∑ (𝜃𝑒,𝑖
𝑒𝑥𝑝

− 𝜃𝑒,𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1     (3) 

 

𝐸𝑢𝑛𝑑𝑖𝑓𝑓 = ∑ (𝜃𝑜,𝑖
𝑒𝑥𝑝

− 𝜃𝑜,𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1     (4) 

 

In Eqn. 2, 3 and 4, n represents the number of data points in 

the experimental results array fexp (momentum-matching 

frequency), obtained from the diffraction testing, with each 

point corresponding to a different ζrot angle. fsim represents 

the simulated values of the  momentum-matching frequency 

generated by the optimization algorithm. The squared 

difference is selected because it assigns greater weight to 

larger errors, ensuring the optimization algorithm to 

prioritize reducing significant discrepancies.  

During each iteration, the algorithm tests different 

configurations of the variables θc, α, γ and β, aiming to 

minimize the cumulative error across all three equations, thus 

optimizing the objective function.  

To ensure the search remains within realistic AOTF 

parameter ranges, bounds were set for θc, α, γ and β. The 

selected bounds for the COTS AOTF are listed in Tab. 1, 

where the left is the lower bound, and the right is the upper 

bound. 

Table 1. Optimization variables and their bounds. 

Variable Bounds Unit 

θc [10; 55] Degrees 
α [5; 16] Degrees 
γ [-0.1; 0.1] Degrees 
β [5; 12] Degrees 

3. EVALUATION OF THE OPTIMIZATION 

RESULTS  

After setting the objective function and bounds for the L-

BFGS algorithm, the optimization was executed multiple 

times with varying initial guesses to avoid the algorithm 

from becoming stuck in a local minimum. Each 

optimization run converged to the optimized parameters 

listed in Tab. 2. 

 

 

 

 

 

 

 

Table 2. Optimized parameters. 

Variable Optimized 

value 

Unit 

θc 25.92 Degrees 
α 11.97 Degrees 
γ -0.1 Degrees 
β 7.2 Degrees 

 

The optimized values were subsequently applied to the 

analytical model. A frequency matching graph is shown 

in Fig. 5, indicating the match between the predictions (in 

green) and the experimentally obtained data (in blue). It 

can be seen that the frequency remains relatively 

consistent as the rotational angle increases.  

 

 
Figure 5. Momentum-matching frequencies as a 

function of AOTF rotational angle for the ordinary ray 

diffraction test. 
 

The undiffracted and diffracted angle results are 

considered together. For the undiffracted rays presented 

in Fig. 6, in which β plays a key role, the optimization 

algorithm slightly overestimates the experimental curve.  
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Figure 6. Undiffracted ray angles (θ3o) as a function of 

AOTF rotational angle for the o-ray diffraction test. 
 

Notably, the angles of the diffracted rays remain 

extremely stable for this AOTF, consistently ranging 

between 2.65° and 2.70° (Fig. 7). This stability is an 

advantage for the optical design, enabling precise 

predictions of the diffracted ray’s path and accurate CCD 

placement. However, this stability also creates a challenge 

for the optimization algorithm. When the algorithm 

attempts to reduce the simulated undiffracted angle by 

lowering β, it inadvertently shifts the diffracted angle 

values downward, which penalizes the algorithm if β is 

reduced too much.  

 

 
Figure 7. Diffracted ray angles (θ3e) as a function of 

AOTF rotational angle for the o-ray diffraction test. 
 

In general, the optimization algorithm shows good results, 

with all simulation curves aligning closely with the 

experimental data with a discrepancy between 

experimental and calculated values below 0,02° (Fig. 7). 

These frequency mismatches could arise from small 

deviations in the crystal’s material properties, such as the 

acoustic velocity or refractive indices, compared to the 

values used in the analytical model.  

4. CONCLUSIONS 

In this research, a dedicated optimization algorithm is 

explored, in combination with an analytical model. The 

goal is to find characterization parameters linked to the 

practical build of the AOTF. The results show that the 

unknown parameters θc, α, γ, and β can be determined.  

The L-BFGS optimization algorithm was selected due to 

its efficiency in handling multiple variables, its 

computational speed, and its enhanced capability in 

locating global minima compared to simpler optimization 

methods. To direct the optimization, an objective function 

was defined in order to minimize the difference between 

the simulated and measured values. Additionally, search 

bounds were set for the AOTF parameters θc, α, γ, and β, 

constraining the algorithm's variable adjustments within 

these limits. 

The optimized values for these four parameters generated 

curves that closely matched the experimental results. 

Further improvements could be achieved by either 

adjusting the penalty in the objective function to refine 

frequency-matching curves or by incorporating additional 

variables, such as the material’s acoustic velocity. These 

changes would increase computational time due to the 

added search variables, but could enhance the 

characterization process.  
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