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ABSTRACT

One of the main challenges for users applying an AOTF as a
commercial off-the-shelf component for optical wavelength
filtering, is the lack of detailed manufacturing information on
critical parameters. Information such as diffraction angles,
the precise RF driving frequencies required for momentum-
matching conditions, as well as the data for each wavelength
across a certain optical spectrum is not always easily
available. To obtain this information, users must perform
physical tests to configure the optimal frequencies,
diffraction angles, and incidence angles for each wavelength
of interest which is labor-intensive and costly.

This research uses an optimization algorithm applied to an
analytical model which can characterize key angles related
to the AOTF’s crystallographic axis, such as the
crystallographic axis angle 6, the tilt-angle a, as well as facet
inclination angles B and vy. First, diffraction testing on an
AOTF is done, by recording both output ray angles and the
momentum-matching frequency. Then the optimization
algorithm is chosen and applied to the analytical model to
determine the optimal parameters for 6, o, vy, and . With
these parameters, the AOTF’s behavior can be extrapolated
to multiple wavelengths, which not only saves time, but also
enables more versatile planning of optical setups..
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1. INTRODUCTION

Acousto-Optic Tunable Filters (AOTFs) make use of
acoustic waves to manipulate the diffraction of light within a
transparent crystal. These versatile devices are employed in
various fields, such as ground- and space-based spectroscopy
[1, 2] and network applications [3]. AOTFs are compact
solid-state devices that filter desired optical wavelengths by
applying an appropriate Radio-Frequency (RF) signal. Their
compactness, robustness and quick tunability enables fast,
efficient, and precise control over the spectral properties of
light. AOTFs allow for the selective transmission or blocking
of specific optical wavelengths, which makes them
particularly appealing for space-based missions [4].

To operate AOTFs and regulate light diffraction at a specific
optical wavelength, a transducer is mounted to the side of a
transparent crystal, such as TeO: or quartz. This transducer
converts RF signals of a designated frequency and power
into sound waves [5]. Applying the appropriate frequency
and power level, the Bragg matching condition can be
satisfied, enabling two first-order diffracted light beams
emitting at the crystal's output [6].

Using commercial off-the-shelf (COTS) AOTFs in an
optical setup comes with certain challenges. Mostly the
information provided on critical parameters in order to have
an optimal functioning AOTF, is limited.

The aim of this paper is to present an optimization
algorithm, using an analytical model, in order to
characterize the AOTEF’s crystallographic axis angle 0O,
the tilt-angle o, as well as facet inclination angles 3 and y
(Fig. 1). Therefore, first a diffraction testing is done using
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a COTS AOTF working in the optical visible domain.
Both output ray angles are recorded, together with the
momentum-matching  frequency.  Additionally, a
developed optimization algorithm is applied to the
analytical model, providing the parameters ¢, a, y, and B.

U ‘J\‘:
001]

[110]

B
Transducer

Figure 1. AOTF setup and positioning of the global
(black) and crystallographic (blue) coordinate systems.

2. AOTF PARAMETER CHARACTERIZATION
APPROACH

The optimization algorithm requires the analytical
model’s outputs in order to find optimal values that can
characterize the main AOTF angles.. First, this model is
briefly explained, followed by experimental diffraction
tests. Consequently, the algorithm is applied to the model
and the AOTF characterization parameters are obtained.

2.1 Analytical model

The goal of the analytical model is to provide as an output
the undiffracted ray’s optical path through the AOTF, as
well as ray tracing of the diffracted ray, accompanied with
the frequency signal required for the momentum-
matching condition.

The model is based on the approach proposed by Zhao et
al. [7], where the AOTF is split into three different
surfaces, namely the AOTF entrance surface, the acoustic
field and the exit surface (see Fig. 1). Using Directional
Cosine Matrices (DCM) in 3D provides the baseline for
the Python-based analytical model used in this research.
This model has been broken down into more substages
and uses adapted mathematical expressions in comparison
to Zhao et al. [7], allowing a broad range of optical
wavelengths in which the model is applicable.

2.2 Experimental diffraction tests

In this section, diffraction testing on a TeO, COTS AOTF
(550 — 1000 nm) was carried out by recording both output
ray angles, the rotational angle of the AOTF and the
momentum-matching frequency. A vertically polarized
635 nm laser light is applied to the AOTF via a polarizer
and an iris (Fig. 2). The diffraction occurred only when a
vertically polarized light was shone, using a 145 MHz RF
signal applied to the AOTF transducer. This RF signal
was generated using a lab RF generator and amplifier
setup.
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Figure 2. AOTF diffraction test setup with (it is the
rotational angle, 83, is the ordinary undiffracted ray

angle and 03 is the extraordinary diffracted ray.

An example of this diffraction is shown in Fig. 3, where
the diffracted light appears faint to the left of the
undiffracted light. The dimness of the diffracted light is
due to the RF power being set at 100 mW.
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Figure 3. AOTF diffraction when a vertically polarised
light is shone onto the AOTF.

The momentum-matching frequency was determined, by
rotating the AOTF over a limited range (from -2 degrees
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to 8 degrees, compared to the incoming light beam) using
the rotational stage (Fig. 2 and 3). The accompanying
diffracted and undiffracted rays angles 03, and 03, were
also recorded by detecting the peak diffracted ray
intensity.

2.3 Algorithm selection

To integrate the developed analytical model with an
optimization algorithm, the first step was to identify a
suitable algorithm. The approach involved selecting an
existing method and adapt the analytical model accordingly.
Given that the model was implemented in Python and
involved multiple variables influencing the results, the
selection was limited to multi-variable optimization
algorithms available in SciPy. The “L-BFGS-B” algorithm
(Limited-memory Broyden-Fletcher-Goldfarb-Shanno) was
chosen due to its suitability for multi-variable nonlinear
problems and its computational efficiency compared to other
quasi-Newton methods [8]. Moreover, this algorithm
supports box constraints, allowing for straightforward
boundary conditions on variables (6, a, v, B).
Quasi-Newton methods aim to find a local minimum by
approximating the curvature of the objective function,
focusing on values where the function approaches a local
minimum [8]. To determine the curvatures for each search
variable, these methods typically rely on an inverse Hessian
matrix [9], containing the second-order partial derivatives.
However, calculating a full Hessian becomes increasingly
time-consuming as the number of variables (n) grows [10].
To address this, the limited-memory approach estimates the
Hessian matrix using only recent search iterations, rather
than each time recalculating it from scratch [10]. A detailed
mathematical explanation of how this algorithm works is
beyond the scope of this research. The primary reason for
selecting this algorithm is its computational efficiency in
solving multi-variable problems and its ease of
implementation in Python through the SciPy library, which
also supports simplified variable constraints. Furthermore,
the algorithm is relatively effective in finding a global
minimum (optimal value) of the objective function [10].
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Figure 4. Simplified multimodal example where
finding global minimum is challenging for Newton
methods.

However, L-BFGS-B can become trapped in local minima,
as shown in Fig. 4. This is an example of an objective
function with a single variable n demonstrating this
limitation [10]. To address this, running the algorithm
multiple times with different initial guesses can improve the
chances of finding the global minimum.

In contrast, genetic algorithms are generally more effective
at locating the global minimum in such cases. Nevertheless,
they are more complex to implement, requiring constraints
within the objective function, and often come with higher
computational costs [11, 12]. Due to these factors, genetic
algorithms were not considered in this study but are
recommended for future research.

2.4 Obijective function and bounds selection

With the L-BFGS-B algorithm selected, the next step is to
define its input for optimization. The primary input is the
objective function — a scalar function that the algorithm
seeks to minimize [10]. The objective is to reduce the
discrepancy between the experimental measurements from
the COTS AOTF diffraction testing and the predictions from
the analytical model. This discrepancy is quantified as a total
error, formulated in Eqn. 1 as the objective function. This
represents the sum of squared errors for momentum-
matching frequency and diffracted/undiffracted angles.

Etot = Efreq + Ediff + Eundiff (1)

Where each term is defined as follows:

Efreg = Xia (57 = £5m)’ @
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Eqipp = 1(96xp ‘9$lm ®3)

1(eexp

951m

undlff - (4)
In Egn. 2, 3 and 4, n represents the number of data points in
the experimental results array f** (momentum-matching
frequency), obtained from the diffraction testing, with each
point corresponding to a different (ot angle. f™ represents
the simulated values of the momentum-matching frequency
generated by the optimization algorithm. The squared
difference is selected because it assigns greater weight to
larger errors, ensuring the optimization algorithm to
prioritize reducing significant discrepancies.

During each iteration, the algorithm tests different
configurations of the variables O, a, y and B, aiming to
minimize the cumulative error across all three equations, thus
optimizing the objective function.

To ensure the search remains within realistic AOTF
parameter ranges, bounds were set for 6, a, y and B. The
selected bounds for the COTS AOTF are listed in Tab. 1,
where the left is the lower bound, and the right is the upper
bound.

Table 1. Optimization variables and their bounds.

Variable Bounds Unit

Oc [10; 55] Degrees
a [5; 16] Degrees
Y [-0.1; 0.1] Degrees
B [5; 12] Degrees

3. EVALUATION OF THE OPTIMIZATION
RESULTS

After setting the objective function and bounds for the L-
BFGS algorithm, the optimization was executed multiple
times with varying initial guesses to avoid the algorithm
from becoming stuck in a local minimum. Each
optimization run converged to the optimized parameters
listed in Tab. 2.
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Table 2. Optimized parameters.

Variable Optimized Unit
value

Oc 25.92 Degrees

a 11.97 Degrees

y -0.1 Degrees

B 7.2 Degrees

The optimized values were subsequently applied to the
analytical model. A frequency matching graph is shown
in Fig. 5, indicating the match between the predictions (in
green) and the experimentally obtained data (in blue). It
can be seen that the frequency remains relatively
consistent as the rotational angle increases.
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Figure 5. Momentum-matching frequencies as a

function of AOTF rotational angle for the ordinary ray

diffraction test.

The undiffracted and diffracted angle results are
considered together. For the undiffracted rays presented
in Fig. 6, in which B plays a key role, the optimization
algorithm slightly overestimates the experimental curve.
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Figure 6. Undiffracted ray angles (630) as a function of
AQOTF rotational angle for the o-ray diffraction test.
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Notably, the angles of the diffracted rays remain
extremely stable for this AOTF, consistently ranging
between 2.65° and 2.70° (Fig. 7). This stability is an
advantage for the optical design, enabling precise
predictions of the diffracted ray’s path and accurate CCD
placement. However, this stability also creates a challenge
for the optimization algorithm. When the algorithm
attempts to reduce the simulated undiffracted angle by
lowering B, it inadvertently shifts the diffracted angle
values downward, which penalizes the algorithm if B is
reduced too much.
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Figure 7. Diffracted ray angles (6s) as a function of
AOTF rotational angle for the o-ray diffraction test.
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In general, the optimization algorithm shows good results,
with all simulation curves aligning closely with the
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experimental data with a discrepancy between
experimental and calculated values below 0,02° (Fig. 7).
These frequency mismatches could arise from small
deviations in the crystal’s material properties, such as the
acoustic velocity or refractive indices, compared to the
values used in the analytical model.

4. CONCLUSIONS

In this research, a dedicated optimization algorithm is
explored, in combination with an analytical model. The
goal is to find characterization parameters linked to the
practical build of the AOTF. The results show that the
unknown parameters 0, o, v, and  can be determined.
The L-BFGS optimization algorithm was selected due to
its efficiency in handling multiple variables, its
computational speed, and its enhanced capability in
locating global minima compared to simpler optimization
methods. To direct the optimization, an objective function
was defined in order to minimize the difference between
the simulated and measured values. Additionally, search
bounds were set for the AOTF parameters 6, a, v, and B,
constraining the algorithm's variable adjustments within
these limits.

The optimized values for these four parameters generated
curves that closely matched the experimental results.
Further improvements could be achieved by either
adjusting the penalty in the objective function to refine
frequency-matching curves or by incorporating additional
variables, such as the material’s acoustic velocity. These
changes would increase computational time due to the
added search variables, but could enhance the
characterization process.
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