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ABSTRACT

This work attempts to provide a novel look at speech pri-
vacy preservation, by proposing a solution based on sound
masking as an alternative or a complement to traditional
sound control and noise cancellation methods. We pro-
pose a framework for generating a masker signal whose
masking curve approximates the spectral shape of the tar-
get speech to be masked. The approximation is done
by Gradient Descent-based optimization, to minimize the
distance between the magnitude spectrum of the target
speech and the masker. The results show that the proposed
algorithm exhibits the desired effect, reducing the mea-
sured annoyance when other metrics are kept constant.
Although proper implementation in a real-world system
is out of the scope of this paper, it serves to validate the
theoretical background proposed here.

Keywords: psychacoustic annoyance, signal masking,
block processing, numerical optimization

1. INTRODUCTION

Unwanted noise in open-plan offices, healthcare facilities,
and residential spaces disrupts concentration, compro-
mises confidentiality, and increases stress. Sound masking
technology mitigates these effects by generating a low-
level, unobtrusive background sound that conceals conver-
sations and auditory distractions, enhancing privacy and
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acoustic comfort. It is widely applicable in both con-
trolled sound zones and open acoustic spaces [1–6]. As
an alternative, traditional noise control methods, such as
active noise control [7, 8] and sound zone control [9, 10],
though effective under optimal conditions, rely on precise
reference signals or a priori information that are often
impractical to obtain. In contrast, sound masking lever-
ages the natural masking effect, where one sound renders
another less perceptible, without requiring detailed infor-
mation about the acoustic channels. While most studies
evaluate the psychological impact of various fixed mask-
ing signals — such as white noise, pink noise, or speech-
shaped noise [11] — few explore the creation of a masker
tailored to the specific acoustic environment. This work
focuses on generating a dynamic masker designed to op-
timize both privacy and listening comfort by adapting to
the characteristics of the speech to be masked.

2. RELATED WORK

Research on masking sounds for privacy dates back to the
1970s [12, 13]. Early approaches often relied on prede-
fined noise types such as white, pink, babble, or speech-
shaped noise [5]. Other sounds, like nature sounds [4,6] or
music [6, 14], have been explored, but pink noise remains
the most common. To evaluate masker efficiency, metrics
like the speech transmission index (STI) [4–6, 15] and ar-
ticulation index (AI) [16] are frequently used. However,
we opted for the short-time objective intelligibility (STOI)
[17], designed to better handle time-frequency process-
ing. The key premise of this work is that optimal masking
requires tailoring the sound to the speech being masked.
While constant noisy sounds are more efficient for mask-
ing, they are less tolerable. Psychoacoustic research re-
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veals that masking is a frequency-dependent phenomenon
[18]. By reducing energy in spectral regions that do not
contribute to masking and ensuring enough energy where
it does, we can maintain masking efficiency while min-
imizing annoyance. The Masking Curve [18] describes
a signal’s masking capability across the frequency spec-
trum, providing a threshold dB value for each frequency
that a given signal can mask. This psychoacoustic ap-
proach forms the foundation of our method, balancing in-
telligibility reduction and listener comfort.

3. PROBLEM FORMULATION

We aim to mask a speech signal x(n) with a masker sig-
nal y(n), such that the mixture x(n) + y(n) is unintelligi-
ble. To avoid trivial solutions where louder maskers pro-
vide better masking, we fix the masker energy Ey = C,
where C is a constant determined by practical considera-
tions (e.g., desired SNR limits). Since the speech signal
x(n) typically has a non-flat spectrum, the masker y(n)
does not need uniform energy across all frequencies to ef-
fectively mask it. The total masker energy, expressed as:

Ey =

fs/2∑
−fs/2

Sxx(f) (1)

can be minimized by reducing spectral components
where little or no masking energy is required. Psychoa-
coustic research shows that the masking effect is governed
by frequency and energy [18]. A masker’s energy spec-
tral density Y (f) defines its masked threshold ν(f) —the
minimum energy level required to mask a signal at each
frequency. To create a masker y(n) that matches the target
speech spectral shape, we iteratively adjust y(n) to mini-
mize the distance between X(f) and ν(f): This leads to
the optimization problem:

min
y(n)

(∥X(f)− ν(f)∥)2 (2)

where ν(f) is nonlinearly dependent on y(n) [18]. To
avoid intelligibility leakage, we reset the phase to zero at
each frame, simplifying the problem to spectral magnitude
only. A block diagram of the process is shown in Fig. 1.

4. PROPOSED METHOD

To achieve this, we choose to generate a control sig-
nal ϵ(n) and shape its spectrum by multiplying it with a

Figure 1: Optimization framework to produce a
masker signal, using its masking curve to approxi-
mate the speech’ spectrum. Dashed lines represents
the optimization loop.

weight vector W⃗ in the frequency domain. The mask-
ing curve ν(f) then depends directly on the resulting time
domain signal. The STOI and PA metrics being based
on third-octave bands, we choose W⃗ to have a compo-
nent along each third octave band, meaning that each fil-
ter weight represents an octave band. Our objective is to
find the set of filter weights W⃗ which minimizes the dis-
tance between the target speech spectrum and the masked
threshold of our masker:

min
W⃗

M∑
k

(∥Xk − νk∥)2 (3)

X̃k is the k-th third octave band amplitude of the win-
dowed speech frame and νk is the masked threshold for
the k-th third-octave band with M the total number of
bands. When the optimization is finished, the final weight
vector W⃗ is used to filter a raw masker sound, at a power
determined by the pre-defined Masker to Signal Ratio
(MSR).

4.1 Block processing

We use block-based processing; the target speech to be
masked is windowed in the time domain, and each win-
dowed block of signal is then analyzed in the frequency
domain. The windowing process uses a classic Hanning
window, e.g.,

x̃(x) = ω(n)x(n) (4)

where ω(n) is the Hanning window function, x(n) the
sampled input signal and x̃(n) the windowed signal frame.
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The Hanning window exhibits constant overlap-add prop-
erty (COLA) thereby allowing reconstruction of the sig-
nal in the time-domain after frequency-domain process-
ing [19]. Since this process is block based, each block is
adjusted to the desired MSR value, resulting in a fluctu-
ating energy, following the envelope of the input speech
maskee.

4.2 Optimization

We frame the problem as an unconstrained optimization
problem in which we try to minimize the error or distance
between a desired variable and an estimated variable. The
desired variable is defined as the speech spectrum, X(f),
and the estimated variable is the masking curve calculated
from the produced masker, ν(f). The cost function is the
l2-norm of the difference

J(W) =

M∑
k

(∥Xk − νk∥)2 (5)

which for simplicity is assumed to be convex. To find a
global minimum for this function, we use the gradient de-
scent method. Since there is no closed-form solution to
the derivative of our error function, we employ a numer-
ical optimization scheme, namely the Finite Difference
Method (FDM). In this method, the derivative is approxi-
mated by

df

dx
=

f(x+ h)− f(x− h)

2h
(6)

following a rewriting of Taylor’s first order decomposition
of differentiable functions. For our cost function J(W),
this gives the following gradient computation:

∆ =
J(W + ϵ)− J(W − ϵ)

2ϵ
(7)

The update equation for weight vector W is then:

Wi+1 = Wi − lrate∆ (8)

where lrate is a hyper-parameter whose value is chosen
empirically.

4.3 Smoothing filter

Once the optimal third-octave band weights are found, we
design a filter whose frequency response matches these
weights. Applying this filter to the raw masker sound
shapes its frequency domain according to the weight val-
ues.

Figure 2: Cepstral windowing method used to
smooth the spectrum before converting it to a filter
for the raw masker sound

We call this the smoothing filter because we want to
avoid a rough masking sound or one that resembles the
original speech too closely, as that would compromise in-
telligibility. To achieve this, we transpose the weights
from the third-octave basis to a linear frequency axis, take
the cepstrum, and apply a ”liftering” filter to retain only
the slow spectral variations.

We then return to the frequency domain via the
Fourier transform, taking the exponential to reverse the
log transformation of the cepstrum. This produces a
smoothed spectrogram, which we use to derive the filter
for the raw masker sound by taking the inverse Fourier
transform.

S(f) = exp(FFT (w ∗ IFFT (log(FFT (x))))) (9)

where w is the ”lifter” (i.e. the filter), we apply to the
cesptrum to only keep the first few values.

This spectral smoothing technique is called the ”cep-
stral windowing method”, for which a graphical descrip-
tion is given in Fig. 2 and is explained in [19].

4.4 Metrics

In this work, we rely on three metrics to evaluate the
performance of our framework, which correspond to the
two subjective criteria in which we are interested, namely
the intelligibility of the speech and the annoyance of the
noise.

4.4.1 STOI

Short-term objective intelligence (STOI) is a metric pro-
posed to measure the objective intelligibility of a given
speech signal. The subjective evaluation carried out in
[17] shows that the STOI objective metric correlates with
perceived annoyance. A value of STOI of 0.20 correspond
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roughly to a subjective intelligibility score of less than
10%, with a correlation coefficient of 0.95. We noticed
from our experimental results that the STOI function does
not distinguish very well between two different maskers at
low values of intelligibilities, for instance when increasing
the volume of the masker. That is, the function exhibits a
bit of saturation in the low range (below 0.20), while an-
other metric such as CSII was able to make clearer dis-
tinctions between maskers. This is why we chose to also
use CSII in addition to STOI.

4.4.2 CSII

Proposed to measure the intelligibility of a speech sig-
nal [20], Coherence Speech Intelligibility Index (CSII)
computes speech intelligibility, by eq.(14) [20]. Accord-
ing to the paper’s finding, a CSII value of 0.10 corre-
sponds roughly to a subjective intelligibility score of less
than 10%, with a correlation coefficient of 0.98.

4.4.3 Annoyance

We consider the Annoyance derived in [21] to measure the
degree of annoyance incurred by the masker, given by:

PA = N5(1 +
√
ω2
S + ω2

FR) (10)

where ωS = (S − 1.75) × 0.25 log(N5 + 10) and
ωFR = 2.18

N0.4
5

(0.4F + 0.6R) and the following variables
are defined as follows:

• N5 relates the perceived loudness of the signal

• S is the sharpness (in acum)

• R measures the roughness (in asper)

• F measures the fluctuation strength (in vascil)

It was shown [21] that this objective annoyance metric
correlates with the perceived annoyance.

4.5 Masker signal composition

It was reported in [11] that babble noise is the least annoy-
ing type of masker when compared to white noise, pink
noise, and speech-shaped noise, so we decided to use it
as our masker sound. Additionally, in order to add con-
tent/energy in some parts of the spectrum, we added na-
ture sounds to complement the babble sound, which were
mostly field recordings from the forest, containing sounds
of a river flowing, the rain, and birds chirping. Different
combinations of raw sounds were tested, using different

Table 1: Proportion of the raw sounds in the different
masking sounds generated and used as input to the
optimization process. ‘noise’ denotes white noise,
‘bab’ stands for babble noise and ‘nat’ stands for na-
ture sounds.

sound noise bab.1 bab.2 bab.3 nat.1 nat.2 nat.3

a (1) 0.1 0 0 0 0.5 0.5 0.5

b (6) 0.1 0.5 0.5 0.5 0.5 0.5 0.5

c (8) 0.1 0.5 0.5 0.5 0 0 0

d (noise) 1 0 0 0 0 0 0

(a) ‘a’ (b) ‘b’ (c) ‘c’

Figure 3: Spectra of ‘a’ (left), ‘b’ (center), and ‘c’
(right)

Figure 4: Experimental setup

mixing proportions, as shown in table 1. Sound a con-
sists of nature sounds and white noise, sound b consists
of nature sounds, babble sounds and white noise, sound c
consists of babble sounds and white noise, while sound d
(noise) was composed of white noise only.

The spectra of each of the raw masker sounds are
given in fig.3; with sound ‘a’ at the top, sound ‘b’ sec-
ond to top, and sound ‘c’ at the bottom. One can see some
sonic patterns in the spectrum; at second 5, for example,
between 5 kHz and 10 kHz for sounds 6 and 8. The same
pattern is not visible in sound 1, however sound ‘a’and
sound ‘b’ seem to share similar content in the 1 kHz-2
kHz frequency band. Similarly, sound ‘b’ and 8 have sim-
ilar content in the 0-1 kHz band. sound ‘b’ seem to be the
sound sharing patterns with most other sounds, which is
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confirmed by the information provided in Table1. In that
sense, sound ‘b’ is the closest to white noise because it is
the ”fullest” in frequency.

5. RESULTS

This section presents the measured Intelligibility (STOI
and CSII) as well as the annoyance of the masker gener-
ated by the proposed methods.

The masker and the input speech are combined to sim-
ulate the resulting acoustic signal heard in practice. An-
noyance is computed on this signal, while the clean input
speech and the masker are used to calculate the intelligi-
bility metrics, as shown in Fig. 4.

All experiments were conducted with a fixed Masker
to Signal Ratio (MSR) of -3 dB, meaning the masker
power is adjusted at each frame according to the input
speech power. This value was chosen as it produced rea-
sonable intelligibility levels.

5.1 Hyper parameter selection

5.1.1 Window length

We tested analysis windows of 25 ms, 50 ms, 100 ms,
200 ms, and 400 ms at an MSR of -6 dB for four masker
sounds (Table 1). A 100 ms window consistently pro-
vided the best balance between low annoyance and low
intelligibility. At -6 dB, it produced the lowest annoy-
ance for sounds 6 and 8, the second lowest for white noise
(by only 0.3), and a mid-range value for sound 1. At -
3 dB, the 100 ms window again gave competitive annoy-
ance levels, remaining close to the lowest values across all
sounds. Intelligibility variations were small at -6 dB, stay-
ing low (under 0.2 for STOI and 0.10 for CSII), except for
sound 1, where the 100 ms window produced the lowest
scores—both below the 10% word recognition threshold
(as explained in 2). At -3 dB, the 100 ms window again
yielded the lowest STOI and CSII scores for sound 1 and
remained highly competitive for other sounds. These re-
sults lead us to conclude that a 100 ms window is the most
suitable for our experiment.

5.1.2 Number of Cepstral Coefficients

The number of cepstral coefficients for spectral smooth-
ing affects the signal reconstruction and thus the masker,
by controlling spectrum smoothness. We tested various
coefficient counts to assess their impact on intelligibility
and annoyance.

Table 2: Effect of window length at MSR of -6dB.

Sound ‘a‘ Sound ‘b‘ Sound ‘c‘ Noise

Window STOI CSII PA STOI CSII PA STOI CSII PA STOI CSII PA

25ms 0.15 0.12 99.8 0.10 0.06 93.2 0.11 0.06 87.2 0.10 0.08 99.8

50ms 0.15 0.10 94.1 0.10 0.05 88.4 0.11 0.06 83.1 0.11 0.07 95.6

100ms 0.11 0.05 75.7 0.11 0.07 61.2 0.13 0.08 58.8 0.10 0.07 68.0

200ms 0.14 0.09 73.7 0.11 0.05 66.7 0.11 0.05 64.7 0.11 0.06 68.8

400ms 0.18 0.10 67.9 0.15 0.05 62.9 0.15 0.05 60.3 0.16 0.07 67.7

Table 3: Effect of window length at MSR of -3dB.

Sound ‘a‘ Sound ‘b‘ Sound ‘c‘ Noise

Window STOI CSII PA STOI CSII PA STOI CSII PA STOI CSII PA

25ms 0.27 0.45 75.0 0.16 0.13 77.8 0.17 0.13 76.6 0.21 0.36 76.5

50ms 0.18 0.18 80.4 0.16 0.12 66.2 0.16 0.12 66.4 0.18 0.26 67.5

100ms 0.14 0.10 64.8 0.15 0.12 52.1 0.18 0.17 50.6 0.15 0.14 58.1

200ms 0.17 0.14 62.6 0.14 0.09 51.7 0.15 0.08 52.6 0.15 0.11 59.5

400ms 0.24 0.14 54.9 0.25 0.19 50.4 0.24 0.14 49.8 0.23 0.21 57.6

Table 4 show the metrics for three different raw
masker sounds. In most cases, intelligibility was only
slightly affected, except for the CSII values for sound ’c’.
The general trend is that for sounds 6 and 8, higher coef-
ficients lead to higher intelligibility and lower annoyance.
For sound ’a’, intelligibility remains constant while an-
noyance decreases with more coefficients. In contrast, for
noise, intelligibility decreases and annoyance increases
with more coefficients. Based on these results, we selected
250 coefficients as a good compromise between annoy-
ance and intelligibility.

5.2 Evaluation of the proposed optimization method

To validate our method, we evaluated its performance in
different iterations to confirm that optimization improved
the metrics as expected. We repeated the experiment with
four masker sounds (Table1) to ensure consistency. Fig.5
shows the metric evolution for these sounds, with the ori-
gin on the x-axis representing 0 iterations (i.e., the raw
masking signal as the baseline). For mixes 6, 8 and Noise,
optimization decreased intelligibility (STOI and CSII),
while mix 1 showed the opposite. However, annoyance
decreased significantly for all cases, resulting in more
agreeable maskers. This effect likely arises from the al-
gorithm shaping the raw sound by retaining energy where
speech is present and omitting regions without signal, pro-
ducing a quieter and more tolerable masker. Interestingly,
for three out of four sounds, the masking power dimin-
ished with optimization. We interpret this as the algorithm
potentially failing to fully mask speech due to fixed win-
dow sizes or frequency-domain errors. If speech is present
beyond the frame duration analyzed, it may remain un-
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Table 4: Effect of the number of Cepstral coefficients
on the measured metrics, at -3 dB.

N. Coef Sound ‘a‘ Sound ‘b‘ Sound ‘c‘ Noise

STOI CSII PA STOI CSII PA STOI CSII PA STOI CSII PA

16 0.14 0.12 67.7 0.15 0.12 56.8 0.18 0.17 54.9 0.17 0.22 54.8

32 0.15 0.11 66.8 0.16 0.12 57.1 0.19 0.17 54.8 0.16 0.16 56.5

64 0.14 0.11 64.7 0.16 0.14 53.2 0.20 0.21 52.3 0.15 0.12 59.3

128 0.13 0.10 65.0 0.17 0.16 52.8 0.20 0.23 51.1 0.15 0.13 58.3

256 0.13 0.10 63.1 0.18 0.18 51.2 0.21 0.28 49.3 0.15 0.13 57.9

512 0.14 0.11 60.5 0.18 0.18 50.1 0.21 0.28 48.8 0.16 0.17 56.4

masked. This suggests a weaker than expected correlation
between the masking curve in [17] and the actual intelli-
gibility: Despite producing a theoretically better masker,
the algorithm did not achieve lower intelligibility as antic-
ipated.

5.3 Evaluation against the baseline

As a baseline, we measured intelligibility and annoyance
metrics for a pink noise masker, used as the control signal
for our optimization framework. To ensure a fair com-
parison, we block-processed the pink noise masker to ad-
just its energy according to the maskee’s power, keeping
the SNR constant. Fig. fig. 6 shows the metric evolution
for different SNR values. To achieve a CSII of 0.5, we
need an MSR of about -2.5 dB, yielding an Annoyance
of around 56. The graphs also reveal that while CSII fol-
lows SNR monotonously, STOI shows discontinuities in
the low-intelligibility range, suggesting saturation. For
clearer comparison, Fig. 7 places the baseline and pro-
posed method side-by-side, showing that our method con-
sistently achieves lower annoyance for similar intelligibil-
ity at any SNR level. This confirms that our framework
produces more efficient and less annoying maskers with-
out compromising intelligibility, a highly successful out-
come.

6. CONCLUSION

We have introduced a framework which optimizes the
level of a masker sound at different frequency bins, in or-
der to reduce the total energy of the masker by concentrat-
ing it only in frequency regions where it is needed. This is
achieved by comparing the masking curve of the masker
to the target speech maskee’s spectrum, and finding a filter
to shape the masker’s spectrum so that the masking curve
matches the maskee’s spectrum. Using some intelligibility
metrics as well as annoyance metrics from the literature
(CSII, STOI, PA), our experimental results show that the

Figure 5: STOI, CSII and Annoyance metrics varia-
tion with the number of iterations, for masking sound
1

masker signal produced by this framework exhibits lower
annoyance at similar levels of intelligibility. Therefore
this can find practical use in the design of masking sys-
tems for speech privacy, or at least guide the design of
such systems, as used in office spaces or in cars for exam-
ple.
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Figure 6: Evolution of STOI, CSII and Annoyance
values for a pink noise masker vs. SNR.
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