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ABSTRACT

The C-EPS (Column Type Electric Power Steering) system

is a vehicle system that help smoother steering for the driver.

When defects occurred in the components, interference
noises may arise during steering, leading to driver
discomfort. Conventional End-of-Line (EOL) testing,
which detects defective C-EPS through order tracking at
varying steering speeds, suffers from low detection rates
due to boundary condition variations and low signal-to-
noise ratios. Recently, many studies about anomaly
detection have shown high detection rates, but these
methods face challenges with unpredictable performance,
vulnerability to small design changes, new types of
interference noises and data imbalance.

This study aims to address these challenges by collecting
defective C-EPS data for different types of interference
noise phenomena and constructing an XAl (explainable Al)
model to extract FTFM (Frequency-Time Feature Map)
frequencies. Due to the inherent characteristics of real-
world testing, ensuring the robustness of the model is
challenging. Therefore, instead of directly using the model
for defective C-EPS detection, a quantitative evaluation was
conducted using the extracted FTFM. These FTFM
incorporate noise and vibration characteristics, such as
rotational components and resonance within mechanical
systems, contributing not only to defect detection but also to
potentially reducing the time required to resolve related
issues.

Keywords: c-eps, anomaly detection, nvh, xai, fft

*Corresponding author: JunseoPark@mobis.com
Copyright: © 2025 First author et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution
3.0 Unported License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and
source are credited.

5653

1. INTRODUCTION

EPS (Electric Power Steering) is a steering system in
vehicles that assists the driver’s steering using an electric
motor [1]. When the driver turns the steering wheel, the
system transmits the driver's input torque, angular velocity,
and other physical information to the ECU (Electro Control
Unit). The power generated by the motor is then passed
through a reduction gear, providing the driver with an
appropriate steering feel. It is classified into C-EPS, P-EPS
(Pinion type Electric Power Steering), and to R-EPS (Rack
Type Electric Power Steering) based on the reduction
method (worm wheel & shaft, belt) and location. The
mentioned EPS systems are appropriately selected
according to the required rack force of the vehicle.

C-EPS is primarily used in relatively small vehicles due to
its low permissible output. It is mounted on the steering
column, which is in close to the driver's seat, making it
relatively disadvantageous in terms of noise levels. The
noise generated in C-EPS consists of operation noise, which
occurs from the motor, reduction gear, and bearings during
continuous steering wheel movement; knocking noise,
which arises when the steering wheel is turned left and
right; and rattle noise, which is caused by gear backlash and
gap in the components when driving on rough road surfaces.
This study focuses solely on the operation noise that may
occur in C-EPS, especially on the interference noise.
Research on deep learning based anomaly detection is
actively being conducted to detect anomalies or novel
phenomena, such as interference noise, which do not occur
in normal products at the EOL. Various studies have shown
high defect detection rates by considering the effects of
SNR and domain shifting on robust autoencoder-based
models [2-5], generating data through NVH simulators to
overcome the difficulty of obtaining sufficient data in real-
world scenarios [6], and using data augmentation methods
to increase the amount of data [7]. Although these methods
show high defect detection rates, it is practically impossible
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to replace EOL quality inspection equipment for the
application of deep learning due to various reasons [8].
Additionally, due to the nature of the vehicle development
cycle, designs often change before sufficient defective data
is accumulated, making it difficult to trust the applied
models. Focusing on these issues, this study proposes a
method where the deep learning model does not directly
classify defective products. Instead, it extracts FTFM
through XAl, which serves as the basis for the model's
defect classification. This approach can be applied to
existing EOL equipment and can lead to the analysis of the
causes of defects through signal post-processing.

2. MAIN NOISE SOURCES OF C-EPS

The noise of the C-EPS is primarily analyzed through order
analysis [9]. The frequency range of the noise source can be
calculated by multiplying the relative order with respect to
the reference shaft by the rotational speed of the reference
shaft as in Eqn. (1).

. X Rotational speed of the refersnce shaft [RPM]
Frequency [Hz)= Ordsr X 80 [=20]
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The main component of operation noise generated in C-
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Figure 1. The concept of the C-EPS system.

2.1 Motor

The motor generates a magnetic field by switching the
direction of the current through the stator windings. The
rotor interacts with the stator's magnetic field and begins to
rotate. The generated power then rotates the motor pulley,
which, through the coupler, rotates the worm shaft. The
noise from the motor can be broadly categorized into
aerodynamic, mechanical, and electromagnetic noise. In the
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case of motors used in C-EPS systems, since they operate at
low speeds, electromagnetic noise is dominant [10]. The
order of motor noise, when calculated with respect to the
motor shaft, is determined by the LCM (Least Common
Multiple) of the pole & slots as in Eqn. (2).

Ordetyppor = L.C. M. of pole & slot (2

2.2 Reduction gear

Gear noise is caused by the repetitive contact of the teeth
during the meshing process of the reduction gear (worm
wheel and worm shaft), resulting in noise [11]. Gear noise
is influenced by various factors, including transmission
error, design (such as profile and lead), manufacturing
methods, surface roughness, load due to gap between
components and lubricating grease. The order of gear noise,
when calculated with respect to the steering column, is
determined by the number of teeth on the worm wheel as in
Eqgn. (3).

Order, 3)

eduction gear = thgth.warmwhge!

2.3 Bearing

Bearings are used to reduce friction between components,
providing better rotation, load support, and power
transmission efficiency. Although they are not a primary
source of noise under normal C-EPS operating conditions,
they can produce perceptible noise if contaminated, lack
lubrication, or damaged during manufacturing or
transportation [12]. The fault frequencies of bearings
include the Ball Pass Frequency Outer (BPFO), Ball Pass
Frequency Inner (BPFI), Ball Spin Frequency (BSF), and
the Fundamental Train Frequency (FTF). The above
frequencies are determined based on bearing specifications
such as N (the number of balls), o (the contact angle of the
ball bearing), D (the diameter of the ball bearing), and P
(the pitch diameter). The order of bearing fault noise, when
calculated with respect to the Shaft with a bearing mounted,
is determined as in Eqn. (4)-(7).
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3. FREQUENCY-TIME FEATURE EXTRACTION

<Model train & FTFM extraction>
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Figure 2. The overall process of extracting FTFM and
noise source analysis

The process of extracting FTFM from the C-EPS is shown
in Figure 2. Physical information during C-EPS operation
was collected using microphone and accelerometers. These
data were processed through appropriate signal processing
steps to create an input shape suitable for the model train.
The model was trained using the 2D shape STFT (Short-
Time Fourier Transform) inputs to obtain model with high
accuracy. By utilizing XAl (eXplainable Al), FTFM were
obtained that serve as the basis for distinguishing between
normal and defective products. Additionally, the validity of
the noise and vibration characteristics of FTFM will be
verified through signal post-processing methods.

3.1 Data accumulation

Single axis
accelerometer

Tri axis
accelerometer

Microphone (30 cm)

The operation noise test of C-EPS conducted using a
system-level test setup that simulated conditions similar to
vehicle-level test. Microphones were used to measure the
noise levels. While there were no issues in the current test
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setup, which was conducted in an anechoic chamber, noise
measurement would be difficult on the EOL test. Therefore,
accelerometers were attached to the motor, and both the
upper and lower ends of the worm shaft as in Figure 3. To
analyze the noise trend based on the driver's steering speed,
the test was conducted using an accelerated steering method.
The relative tilting amount between the worm shaft and the
worm wheel differs depending on CW (Clock Wise) and
CCW (Counter Clock Wise) steering; thus, measurements
were conducted twice for each case. A total of 533 sound
pressure & acceleration dataset were collected per sensor by
replacing the component with defective ones identified
during the EOL inspection. Each dataset was labeled based
on the evaluator's subjective assessment as 'Normal' or as
interference noise types 'A,' 'B,’ and 'C'. Type 'A’' noise
occurred intermittently, type 'B' was perceived as periodic
impact noise, and type 'C' was recognized as friction noise.
Out of the total 533 dataset, 298 correspond to ‘Normal’,
while 30, 107, and 98 data points were collected for
interference noise types 'A,' 'B,' and 'C,' respectively. In
actual testing, obtaining evaluation dataset for defective
products is challenging, raising concerns about the model's
robustness. However, in this study, a balanced dataset was
secured, except for interference noise type 'A'.

3.2 Preprocessing

The collected time dataset was transformed into the
frequency domain using STFT. The signal processing
parameters used for this transformation are in Table 1.

Table 1. The signal processing parameters

Sampling Frequency 12800 Hz

Frequency resolution 10 Hz
Window Hanning
Overlap 70 %

Typically, a smaller frequency resolution is used to obtain
more detailed frequency information. However, when using
for model training, an excessively small resolution may lead
to significant asymmetry in the input shape, causing an
imbalance in the FTFM extraction. Therefore, appropriate
parameters were selected to avoid this issue. The
preprocessed input data has a shape of (380, 641),
corresponding to 380 along the time axis and 641 along the
frequency axis.
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3.3 Model train

Table 2. The validation accuracy for each sensor,
ResNet18

Sensor Validation accuracy [%]
Microphone 97.2
Motor 92,5
Worm shaft upper 94.4
Worm shaft lower 95.3

Due to the inherent limitations in securing a large dataset
for operation noise test, ‘ResNet” which features residual
connections, was employed [13]. This model was chosen as
CNN are known to outperform transformer model when
trained on limited dataset [14]. Among them, to prevent
overfitting and minimize information loss in the last
convolution layer, which is used for FTFM extraction, the
relatively lightweight model 'ResNet18' was chosen. In
cases with limited dataset, accuracy can vary significantly
depending on the data used for training. Therefore, k-fold
cross-validation (k=5) was employed to assess potential
biases introduced by the train data. The validation accuracy
for each sensor of the model is in Table 2. Since the model
is not directly used for defective C-EPS classification,
improving validation accuracy was not the primary
objective. However, to ensure the reliability of the model
for frequency-time feature extraction, a validation accuracy
of over 90% was targeted.

3.4 XAl

P
H
o

RPS

RPS
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Figure 4. FTFM extraction (‘Normal', interference
noise types ‘A’, ‘B’, and ‘C’) of (a) microphone,
accelerometers for (b) motor, (c) worm shaft upper
and (d) worm shaft lower.
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The FTFM of Normal and defective C-EPS were extracted
from the trained model using Grad-CAM [15], one of the
XAl techniques that can serve as a basis for decision-
making as in Figure 4. In this study, other XAl techniques
such as LIME (Local Interpretable Model-agnostic
Explanation) [16] and SHAP (Shapley Additive
explanation) [17] were not used, as they made it difficult to
interpret the intuitive meaning of the feature frequencies
and had longer computation times. Grad-CAM calculates
the importance(weight) of the frequency-time features
through a gradient approach, allowing for a visual
representation of which parts of the STFT the model
focused on when determining whether the test dataset is
classified as ‘Normal’, interference noise types ‘A’, ‘B* or
‘C’. Each data’s FTFM were averaged for each label. The
extracted FTFM were standardized to a range of 0 to 1 to
ensure consistency in scale. Seeing the results for
interference noise type 'A’, due to its intermittent occurrence,
it makes hard to evaluator label the interference noise. The
difficulty in clearly identifying the interference noise label
continues to interpret the results challenging. However, for
interference noise type 'B', the FTFM shows a diagonal
pattern, like an order component, which confirms that the
issue is related to a specific rotating part. In the case of
interference noise type 'C’, identified as friction noise, a
wide range band (especially 2~4 kHz) of frequencies is
extracted as the frequency-time feature map. The
frequency-time feature map of ‘Normal’ appears to reflect
both order-related and wide range band characteristics,
similar to those of 'B' and 'C,' to distinguish between
‘Normal’ and interference noise. Additionally, when
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comparing the FTFMs of the microphone and
accelerometers, a primary difference is that the
accelerometer's FTFM give less importance to the nearby 3
kHz range compared to the microphone's FTFM. This can
be explained by the interference of motor control-related
frequencies [10], which hinder the identification of
defective C-EPS. In summary, FTFM reveals that the
model focuses on higher frequency regions compared to
main orders of C-EPS.

4. RESULTS

(a) Before masking

RPS

Frequency

FTFM mask

(b)

RPS

Frequency

(c) After masking

RPS

Frequency

Figure 5. The process of frequency-time feature mask
filtering, (a) operation noise STFT Before masking,
(b) FTFM mask and (c) operation noise STFT After
masking

The extracted FTFM was used as a filtering mask and
multiplied with the input operation noise STFT dataset
results to highlight the specific steering speed and

frequency regions that the model considers essential for
classification as shown in Figure 5. The masked STFT
results were compared using the RMS (Root Mean Square)
values. As shown in Figure 6, maximum(Q3+1.5*IQR) of
‘Normal” C-EPS was selected as the threshold to evaluate
the defect detection rate.

o

o
[} o
o
%“ ]i = é
Normal A B c
Type

Figure 6. The example box plot of motor acceleration RMS
values and defect detection rate (red dashed line, threshold)

The defect detection rate for each sensor is in Table 3.
Compared to conventional analysis methods such as
O/A(Overall) for observing general frequency trends and
Order Analysis for identifying specific rotational
components, the proposed approach demonstrates an
improved defect detection rate. Notably, a higher detection
rate was observed in the microphone and motor
accelerometer. This indicates that a high validation
accuracy of the model does not necessarily lead to an
improvement in the defect detection rate based on mask
filtered RMS values. Rather, it is assumed that the
improvement in defect detection rate is influenced by the
type and location of the sensors.

Table 3. Comparison of defect detection rates among
O/A, Order, and FTFM analysis methods.
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Defect detection rate [%]

Analysis A ‘o o

Sensor method A B C

O/A 25.0 64.8 40.9

MIC Order 21.6 36.2 21.6

FTFM 57.1 98 88

M O/A 17.8 35.2 13.6

a?:t:r Order 122 136 9.1

FTFM 57.1 100 86

Worm shaft O/A 24.4 72.7 29.5

Upper Order 12.2 14.8 10.2

Acc FTFM 35.7 90.0 74.0
SER S
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Worm shaft O/A 20.0 56.8 35.2
Lower Order 10.0 6.8 6.8
Acc FTFM 57.1 94.0. 86.0

4.1 Noise source analysis using the FTFM
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Figure 7. The C-EPS operation noise test (a)
microphone, (b) accelerometer STFT results of
‘Normal’, interference noise type ‘A’, ‘B’, and ‘C’
(From top to bottom)

Figure 7. presents the STFT results of operational noise test
for 'Normal', interference noise types 'A’, ‘B, and 'C'.
Comparing to Figure 6, it can be observed that there are
distinct visual differences in the FTFM regions where the
model concentrates on classifying. To obtain better
information of the noise sources in the FTFM regions,
signal post-processing was conducted. The time signal data
were bandpass filtered in the 4-6 kHz range, which was
identified as the most distinguishing frequency band
between ‘Normal’ and defective C-EPS in the FTFM. To
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analyze amplitude variations in the filtered time signal data,
the Hilbert transform [18] was applied, and the envelope
was calculated.
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Figure 8. The C-EPS operation noise test (a)
microphone, (b) accelerometer bandpass filtered
Hilbert transformation envelope results of ‘Normal’,
interference noise type ‘A’, ‘B’, and ‘C’ (From top to
bottom)

As shown in Figure 8., In case of 'B' type interference noise,
the bearing fault frequency are distinctly observed, unlike in
the STFT results. This can be interpreted as the noise and
acceleration signals generated by the bearing during
interference noise occurrence being masked by motor and
reduction gear signals, leading to information loss. After
filtering, these signals were clearly distinguished. However,
unlike the microphone, which captures bearing fault
frequencies directly, the accelerometer data revealed
sideband patterns around the reduction gear order. It can be
observed that the signal amplitude is relatively low in low-
speed steering conditions. This is because the filtering was
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performed using a simple 4-6 kHz band-pass filter rather
than the order pattern FTFM of interference noise 'B,’
resulting in the inability to capture the characteristics of
relatively lower frequency bands in low steering speed
conditions. In case of 'C' type interference noise, it shows a
wide frequency range without a diagonal pattern. These
results correspond with human subjective evaluations,
where interference noise 'B' exhibited perceptible periodic
amplitude modulation, 'A" occurred intermittently, and 'C'
was perceived as a harsh sound. The above results
demonstrate that the FTFM incorporates real system’s noise
and vibration characteristics.

5. CONCLUSION

In this study, to improve the detection rate of defective C-
EPS, a CNN model was trained on operation noise test data,
and XAl technigques were used to extract the FTFM, which
represents the frequency features by steering speed that the
model focused on. When using FTFM, a higher defective
C-EPS detection rate was observed compared to
conventional methods. Additionally, further post-signal
processing within the identified feature regions
demonstrated that FTFM incorporate the noise and
vibration characteristics of the system. Based on these
results, the XAl-based C-EPS noise and vibration analysis
method has been validated as effective. Furthermore, using
FTFM enables the optimization of test methods, including
the selection of steering speed intervals with high weights
and relevant frequency bands, while also demonstrating the
potential for estimation of noise sources. Although FTFM
masking cannot superior than the defect detection rate of
the deep learning model itself, it has the advantage of being
directly applicable to existing EOL equipment. During this
study, it was confirmed that various human errors, such as
decreased concentration and adaptation to noise, occur.
Focusing on these issues, the next study will conduct
unsupervised learning using an autoencoder to compare its
effectiveness with human labeling. it will also investigate
whether the parts with increased reconstruction error in the
STFT can be used like FTFM to improve defect detection
rates and whether they contain information on the noise and
vibration characteristics of interference noise, comparing
these findings with XAl.
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