
11th Convention of the European Acoustics Association 
Málaga, Spain • 23rd – 26th June 2025 •  

 

 

XAI BASED FREQUENCY-TIME FEATURE EXTRACTION AND 

DEVELOPMENT OF AN OPTIMAL EVALUATION METHOD FOR C-

EPS 
Junseo Park1*     Hyeon-choel Jo1     Inje Cho1      Jaeyong Seo1     Seongsik Yoo1     Sangkyeong Lee1 

Seungjae Bang2     Jeongryeol Oh2     Cholhawn Jeong2     Sungzoon Cho2 
1 Hyundai Mobis, Yongin-si Gyeonggi-do Republic of Korea 

2 Big Data AI Center, Seoul University, Republic of Korea 
 
 

 

ABSTRACT* 

The C-EPS (Column Type Electric Power Steering) system 

is a vehicle system that help smoother steering for the driver. 

When defects occurred in the components, interference 

noises may arise during steering, leading to driver 

discomfort. Conventional End-of-Line (EOL) testing, 

which detects defective C-EPS through order tracking at 

varying steering speeds, suffers from low detection rates 

due to boundary condition variations and low signal-to-

noise ratios. Recently, many studies about anomaly 

detection have shown high detection rates, but these 

methods face challenges with unpredictable performance, 

vulnerability to small design changes, new types of 

interference noises and data imbalance. 

This study aims to address these challenges by collecting 

defective C-EPS data for different types of interference 

noise phenomena and constructing an XAI (explainable AI) 

model to extract FTFM (Frequency-Time Feature Map) 

frequencies. Due to the inherent characteristics of real-

world testing, ensuring the robustness of the model is 

challenging. Therefore, instead of directly using the model 

for defective C-EPS detection, a quantitative evaluation was 

conducted using the extracted FTFM. These FTFM 

incorporate noise and vibration characteristics, such as 

rotational components and resonance within mechanical 

systems, contributing not only to defect detection but also to 

potentially reducing the time required to resolve related 

issues. 
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1. INTRODUCTION 

EPS (Electric Power Steering) is a steering system in 

vehicles that assists the driver’s steering using an electric 

motor [1]. When the driver turns the steering wheel, the 

system transmits the driver's input torque, angular velocity, 

and other physical information to the ECU (Electro Control 

Unit). The power generated by the motor is then passed 

through a reduction gear, providing the driver with an 

appropriate steering feel. It is classified into C-EPS, P-EPS 

(Pinion type Electric Power Steering), and to R-EPS (Rack 

Type Electric Power Steering) based on the reduction 

method (worm wheel & shaft, belt) and location. The 

mentioned EPS systems are appropriately selected 

according to the required rack force of the vehicle. 

C-EPS is primarily used in relatively small vehicles due to 

its low permissible output. It is mounted on the steering 

column, which is in close to the driver's seat, making it 

relatively disadvantageous in terms of noise levels. The 

noise generated in C-EPS consists of operation noise, which 

occurs from the motor, reduction gear, and bearings during 

continuous steering wheel movement; knocking noise, 

which arises when the steering wheel is turned left and 

right; and rattle noise, which is caused by gear backlash and 

gap in the components when driving on rough road surfaces.  

This study focuses solely on the operation noise that may 

occur in C-EPS, especially on the interference noise. 

Research on deep learning based anomaly detection is 

actively being conducted to detect anomalies or novel 

phenomena, such as interference noise, which do not occur 

in normal products at the EOL. Various studies have shown 

high defect detection rates by considering the effects of 

SNR and domain shifting on robust autoencoder-based 

models [2-5], generating data through NVH simulators to 

overcome the difficulty of obtaining sufficient data in real-

world scenarios [6], and using data augmentation methods 

to increase the amount of data [7]. Although these methods 

show high defect detection rates, it is practically impossible 
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to replace EOL quality inspection equipment for the 

application of deep learning due to various reasons [8]. 

Additionally, due to the nature of the vehicle development 

cycle, designs often change before sufficient defective data 

is accumulated, making it difficult to trust the applied 

models. Focusing on these issues, this study proposes a 

method where the deep learning model does not directly 

classify defective products. Instead, it extracts FTFM 

through XAI, which serves as the basis for the model's 

defect classification. This approach can be applied to 

existing EOL equipment and can lead to the analysis of the 

causes of defects through signal post-processing. 

 

2. MAIN NOISE SOURCES OF C-EPS 

The noise of the C-EPS is primarily analyzed through order 

analysis [9]. The frequency range of the noise source can be 

calculated by multiplying the relative order with respect to 

the reference shaft by the rotational speed of the reference 

shaft as in Eqn. (1). 

 

 (1) 

 

The main component of operation noise generated in C-

EPS are as follows: 

 

 
Figure 1. The concept of the C-EPS system. 
 

2.1 Motor 

The motor generates a magnetic field by switching the 

direction of the current through the stator windings. The 

rotor interacts with the stator's magnetic field and begins to 

rotate. The generated power then rotates the motor pulley, 

which, through the coupler, rotates the worm shaft. The 

noise from the motor can be broadly categorized into 

aerodynamic, mechanical, and electromagnetic noise. In the 

case of motors used in C-EPS systems, since they operate at 

low speeds, electromagnetic noise is dominant [10]. The 

order of motor noise, when calculated with respect to the 

motor shaft, is determined by the LCM (Least Common 

Multiple) of the pole & slots as in Eqn. (2). 

 

 (2) 

 

2.2 Reduction gear 

Gear noise is caused by the repetitive contact of the teeth 

during the meshing process of the reduction gear (worm 

wheel and worm shaft), resulting in noise [11]. Gear noise 

is influenced by various factors, including transmission 

error, design (such as profile and lead), manufacturing 

methods, surface roughness, load due to gap between 

components and lubricating grease. The order of gear noise, 

when calculated with respect to the steering column, is 

determined by the number of teeth on the worm wheel as in 

Eqn. (3). 

 

 (3) 

 

2.3 Bearing 

Bearings are used to reduce friction between components, 

providing better rotation, load support, and power 

transmission efficiency. Although they are not a primary 

source of noise under normal C-EPS operating conditions, 

they can produce perceptible noise if contaminated, lack 

lubrication, or damaged during manufacturing or 

transportation [12]. The fault frequencies of bearings 

include the Ball Pass Frequency Outer (BPFO), Ball Pass 

Frequency Inner (BPFI), Ball Spin Frequency (BSF), and 

the Fundamental Train Frequency (FTF). The above 

frequencies are determined based on bearing specifications 

such as N (the number of balls), α (the contact angle of the 

ball bearing), D (the diameter of the ball bearing), and P 

(the pitch diameter). The order of bearing fault noise, when 

calculated with respect to the Shaft with a bearing mounted, 

is determined as in Eqn. (4)-(7).  

 

 (4) 

 

 (5) 

 

 (6) 

 

 (7) 
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3. FREQUENCY-TIME FEATURE EXTRACTION 

 
Figure 2. The overall process of extracting FTFM and 

noise source analysis 
 

The process of extracting FTFM from the C-EPS is shown 

in Figure 2. Physical information during C-EPS operation 

was collected using microphone and accelerometers. These 

data were processed through appropriate signal processing 

steps to create an input shape suitable for the model train. 

The model was trained using the 2D shape STFT (Short-

Time Fourier Transform) inputs to obtain model with high 

accuracy. By utilizing XAI (eXplainable AI), FTFM were 

obtained that serve as the basis for distinguishing between 

normal and defective products. Additionally, the validity of 

the noise and vibration characteristics of FTFM will be 

verified through signal post-processing methods. 

3.1 Data accumulation 

 
Figure 3. System level operation noise test for C-EPS 
 

The operation noise test of C-EPS conducted using a 

system-level test setup that simulated conditions similar to 

vehicle-level test. Microphones were used to measure the 

noise levels. While there were no issues in the current test 

setup, which was conducted in an anechoic chamber, noise 

measurement would be difficult on the EOL test. Therefore, 

accelerometers were attached to the motor, and both the 

upper and lower ends of the worm shaft as in Figure 3. To 

analyze the noise trend based on the driver's steering speed, 

the test was conducted using an accelerated steering method. 

The relative tilting amount between the worm shaft and the 

worm wheel differs depending on CW (Clock Wise) and 

CCW (Counter Clock Wise) steering; thus, measurements 

were conducted twice for each case. A total of 533 sound 

pressure & acceleration dataset were collected per sensor by 

replacing the component with defective ones identified 

during the EOL inspection. Each dataset was labeled based 

on the evaluator's subjective assessment as 'Normal' or as 

interference noise types 'A,' 'B,' and 'C'. Type 'A' noise 

occurred intermittently, type 'B' was perceived as periodic 

impact noise, and type 'C' was recognized as friction noise. 

Out of the total 533 dataset, 298 correspond to ‘Normal’, 

while 30, 107, and 98 data points were collected for 

interference noise types 'A,' 'B,' and 'C,' respectively. In 

actual testing, obtaining evaluation dataset for defective 

products is challenging, raising concerns about the model's 

robustness. However, in this study, a balanced dataset was 

secured, except for interference noise type 'A'. 

3.2 Preprocessing 

The collected time dataset was transformed into the 

frequency domain using STFT. The signal processing 

parameters used for this transformation are in Table 1. 

 

Table 1. The signal processing parameters  

Sampling Frequency 12800 Hz 

Frequency resolution 10 Hz 

Window Hanning 

Overlap 70 % 

 

Typically, a smaller frequency resolution is used to obtain 

more detailed frequency information. However, when using 

for model training, an excessively small resolution may lead 

to significant asymmetry in the input shape, causing an 

imbalance in the FTFM extraction. Therefore, appropriate 

parameters were selected to avoid this issue. The 

preprocessed input data has a shape of (380, 641), 

corresponding to 380 along the time axis and 641 along the 

frequency axis. 
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3.3 Model train 

Table 2. The validation accuracy for each sensor, 

ResNet18 

Sensor Validation accuracy [%] 

Microphone 97.2 

Motor 92.5 

Worm shaft upper 94.4 

Worm shaft lower 95.3 

 

Due to the inherent limitations in securing a large dataset 

for operation noise test, ‘ResNet’ which features residual 

connections, was employed [13]. This model was chosen as 

CNN are known to outperform transformer model when 

trained on limited dataset [14]. Among them, to prevent 

overfitting and minimize information loss in the last 

convolution layer, which is used for FTFM extraction, the 

relatively lightweight model 'ResNet18' was chosen. In 

cases with limited dataset, accuracy can vary significantly 

depending on the data used for training. Therefore, k-fold 

cross-validation (k=5) was employed to assess potential 

biases introduced by the train data. The validation accuracy 

for each sensor of the model is in Table 2. Since the model 

is not directly used for defective C-EPS classification, 

improving validation accuracy was not the primary 

objective. However, to ensure the reliability of the model 

for frequency-time feature extraction, a validation accuracy 

of over 90% was targeted. 

3.4 XAI 

 

 

 

 
Figure 4. FTFM extraction ('Normal', interference 

noise types ‘A’, ‘B’, and ‘C’) of (a) microphone, 

accelerometers for (b) motor, (c) worm shaft upper 

and (d) worm shaft lower. 
 

The FTFM of Normal and defective C-EPS were extracted 

from the trained model using Grad-CAM [15], one of the 

XAI techniques that can serve as a basis for decision-

making as in Figure 4. In this study, other XAI techniques 

such as LIME (Local Interpretable Model-agnostic 

Explanation) [16] and SHAP (Shapley Additive 

explanation) [17] were not used, as they made it difficult to 

interpret the intuitive meaning of the feature frequencies 

and had longer computation times. Grad-CAM calculates 

the importance(weight) of the frequency-time features 

through a gradient approach, allowing for a visual 

representation of which parts of the STFT the model 

focused on when determining whether the test dataset is 

classified as ‘Normal’, interference noise types ‘A’, ‘B’ or 

‘C’. Each data’s FTFM were averaged for each label. The 

extracted FTFM were standardized to a range of 0 to 1 to 

ensure consistency in scale. Seeing the results for 

interference noise type 'A', due to its intermittent occurrence, 

it makes hard to evaluator label the interference noise. The 

difficulty in clearly identifying the interference noise label 

continues to interpret the results challenging. However, for 

interference noise type 'B', the FTFM shows a diagonal 

pattern, like an order component, which confirms that the 

issue is related to a specific rotating part. In the case of 

interference noise type 'C’, identified as friction noise, a 

wide range band (especially 2~4 kHz) of frequencies is 

extracted as the frequency-time feature map. The 

frequency-time feature map of ‘Normal’ appears to reflect 

both order-related and wide range band characteristics, 

similar to those of 'B' and 'C,' to distinguish between 

‘Normal’ and interference noise. Additionally, when 
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comparing the FTFMs of the microphone and 

accelerometers, a primary difference is that the 

accelerometer's FTFM give less importance to the nearby 3 

kHz range compared to the microphone's FTFM. This can 

be explained by the interference of motor control-related 

frequencies [10], which hinder the identification of 

defective C-EPS. In summary, FTFM reveals that the 

model focuses on higher frequency regions compared to 

main orders of C-EPS. 

4. RESULTS 

 
Figure 5. The process of frequency-time feature mask 

filtering, (a) operation noise STFT Before masking, 

(b) FTFM mask and (c) operation noise STFT After 

masking 
 

The extracted FTFM was used as a filtering mask and 

multiplied with the input operation noise STFT dataset 

results to highlight the specific steering speed and 

frequency regions that the model considers essential for 

classification as shown in Figure 5. The masked STFT 

results were compared using the RMS (Root Mean Square) 

values. As shown in Figure 6, maximum(Q3+1.5*IQR) of 

‘Normal’ C-EPS was selected as the threshold to evaluate 

the defect detection rate.  

 

 

 
Figure 6. The example box plot of motor acceleration RMS 

values and defect detection rate (red dashed line, threshold) 

 

The defect detection rate for each sensor is in Table 3. 

Compared to conventional analysis methods such as 

O/A(Overall) for observing general frequency trends and 

Order Analysis for identifying specific rotational 

components, the proposed approach demonstrates an 

improved defect detection rate. Notably, a higher detection 

rate was observed in the microphone and motor 

accelerometer. This indicates that a high validation 

accuracy of the model does not necessarily lead to an 

improvement in the defect detection rate based on mask 

filtered RMS values. Rather, it is assumed that the 

improvement in defect detection rate is influenced by the 

type and location of the sensors. 

Table 3. Comparison of defect detection rates among 

O/A, Order, and FTFM analysis methods. 

 Defect detection rate [%] 

Sensor 
Analysis 

method 
‘A’ ‘B’ ‘C’ 

MIC 

O/A 25.0 64.8 40.9 

Order 21.6 36.2 21.6 

FTFM 57.1 98 88 

Motor 

acc 

O/A 17.8 35.2 13.6 

Order 12.2 13.6 9.1 

FTFM 57.1 100 86 

Worm shaft 

Upper 

Acc 

O/A 24.4 72.7 29.5 

Order 12.2 14.8 10.2 

FTFM 35.7 90.0 74.0 
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Worm shaft 

Lower 

Acc 

O/A 20.0 56.8 35.2 

Order 10.0 6.8 6.8 

FTFM 57.1 94.0. 86.0 

 

4.1 Noise source analysis using the FTFM 

 
Figure 7. The C-EPS operation noise test (a) 

microphone, (b) accelerometer STFT results of 

‘Normal’, interference noise type ‘A’, ‘B’, and ‘C’ 

(From top to bottom) 
 

Figure 7. presents the STFT results of operational noise test 

for 'Normal', interference noise types 'A', 'B', and 'C'. 

Comparing to Figure 6, it can be observed that there are 

distinct visual differences in the FTFM regions where the 

model concentrates on classifying. To obtain better 

information of the noise sources in the FTFM regions, 

signal post-processing was conducted. The time signal data 

were bandpass filtered in the 4–6 kHz range, which was 

identified as the most distinguishing frequency band 

between ‘Normal’ and defective C-EPS in the FTFM. To 

analyze amplitude variations in the filtered time signal data, 

the Hilbert transform [18] was applied, and the envelope 

was calculated. 

 
Figure 8. The C-EPS operation noise test (a) 

microphone, (b) accelerometer bandpass filtered 

Hilbert transformation envelope results of ‘Normal’, 

interference noise type ‘A’, ‘B’, and ‘C’ (From top to 

bottom) 
 

As shown in Figure 8., In case of 'B' type interference noise, 

the bearing fault frequency are distinctly observed, unlike in 

the STFT results. This can be interpreted as the noise and 

acceleration signals generated by the bearing during 

interference noise occurrence being masked by motor and 

reduction gear signals, leading to information loss. After 

filtering, these signals were clearly distinguished. However, 

unlike the microphone, which captures bearing fault 

frequencies directly, the accelerometer data revealed 

sideband patterns around the reduction gear order. It can be 

observed that the signal amplitude is relatively low in low-

speed steering conditions. This is because the filtering was 
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performed using a simple 4–6 kHz band-pass filter rather 

than the order pattern FTFM of interference noise 'B,' 

resulting in the inability to capture the characteristics of 

relatively lower frequency bands in low steering speed 

conditions. In case of 'C' type interference noise, it shows a 

wide frequency range without a diagonal pattern. These 

results correspond with human subjective evaluations, 

where interference noise 'B' exhibited perceptible periodic 

amplitude modulation, 'A' occurred intermittently, and 'C' 

was perceived as a harsh sound. The above results 

demonstrate that the FTFM incorporates real system’s noise 

and vibration characteristics. 

 

5. CONCLUSION 

In this study, to improve the detection rate of defective C-

EPS, a CNN model was trained on operation noise test data, 

and XAI techniques were used to extract the FTFM, which 

represents the frequency features by steering speed that the 

model focused on. When using FTFM, a higher defective 

C-EPS detection rate was observed compared to 

conventional methods. Additionally, further post-signal 

processing within the identified feature regions 

demonstrated that FTFM incorporate the noise and 

vibration characteristics of the system. Based on these 

results, the XAI-based C-EPS noise and vibration analysis 

method has been validated as effective. Furthermore, using 

FTFM enables the optimization of test methods, including 

the selection of steering speed intervals with high weights 

and relevant frequency bands, while also demonstrating the 

potential for estimation of noise sources. Although FTFM 

masking cannot superior than the defect detection rate of 

the deep learning model itself, it has the advantage of being 

directly applicable to existing EOL equipment. During this 

study, it was confirmed that various human errors, such as 

decreased concentration and adaptation to noise, occur. 

Focusing on these issues, the next study will conduct 

unsupervised learning using an autoencoder to compare its 

effectiveness with human labeling. it will also investigate 

whether the parts with increased reconstruction error in the 

STFT can be used like FTFM to improve defect detection 

rates and whether they contain information on the noise and 

vibration characteristics of interference noise, comparing 

these findings with XAI. 
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