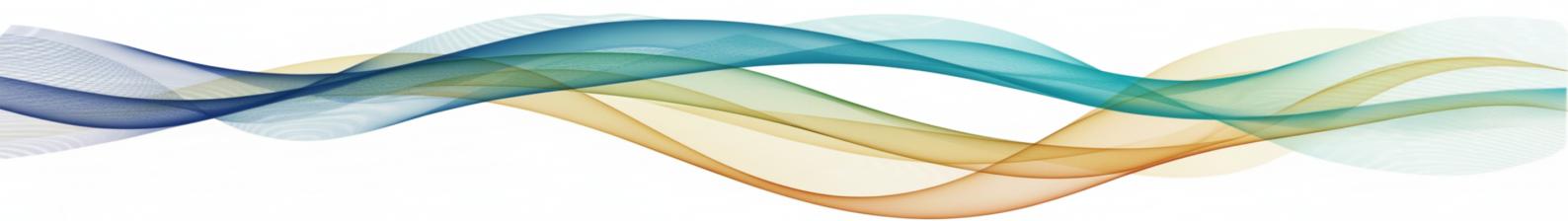


Proceedings of Forum Acusticum - Euronoise 2025

11th Convention of the European Acoustics Association

Edited by

Daniel de la Prida, Jaime Ramis and María Machimbarrena


FORUM ACUSTICUM EURONOISE 2025

23 - 26 JUNE | Malaga, Spain

Chair: Antonio Pedrero
General Secretary: María Machimbarrena

Sociedad Española de Acústica

ISSN 3005-7124
ISBN 978-84-87985-35-5

ORGANIZING COMMITTEE

Honorary President: Antonio Pérez-López (SEA)

Chairman

Antonio Pedrero (SEA)

General Secretary

María Machimbarrena (SEA)

Technical Chairman

Luis A. Azpícueta (UC3M)

Exhibition Chairman

Miguel Ausejo (SEA)

Publications Chairmen

Daniel de la Prida (UPM)

Jaime Ramis (UA)

Forum Laboris Chairman

Roberto San Millán (URJC)

Summer School Chairwomen

Belén Casla (SEA)

Mª Ángeles Navacerrada (SEA)

Laura Estévez (ULE)

Volunteer Coordinators

Juan Negreira (Saint-Gobain Ecophon)

Salvador Luna (UMA)

Cristina Quintero (UMA)

Social Media Coordinator

Lucía Schröder (UMA)

Local Committee

Carolina Gijón (UMA)

CONGRESS COMMITTEE

Ariana Astolfi (EAA)

María Campo (UMA)

Jesús Carbajo (UA)

Teresa Carrascal (IETCC-CSIC)

Alexander Díaz-Chyila (UPM)

Ricardo Hernández (UCA)

Ramón Peral (UMH)

Pedro Poveda (UA)

Samuel Quintana (UCLM)

Carlos Romero (Salford Univ.)

Pedro Salcedo (UMA)

Rosa Mª Alsina (URL)

André Fiebig (EAA)

Fernando Ruiz Vega (UMA)

INTERNATIONAL ADVISORY BOARD

Jorge Arenas

Francesco Asdrubali

Marion Burgess

Torsten Dau

Kristian Jambrošić

Manfred Kaltenbacher

Catherine Lavandier

Luigi Maffei

Carolina Monteiro

Etienne Parizet

Jorge Patrício

Jean-Dominique Polack

Monika Rychtáriková

Brigitte Schulte-Fortkamp

Michael Taroudakis

Nilda Vechiatti

Michael Vorländer

Jo Webb

Jerzy Wiciak

Conference organizer and venue

REVOLUTION EVENTS

Palacio de Ferias y Congresos de Málaga (FYCMA)

Proceedings of Forum Acusticum - Euronoise 2025

ISSN 3005-7124 | ISBN 978-84-87985-35-5

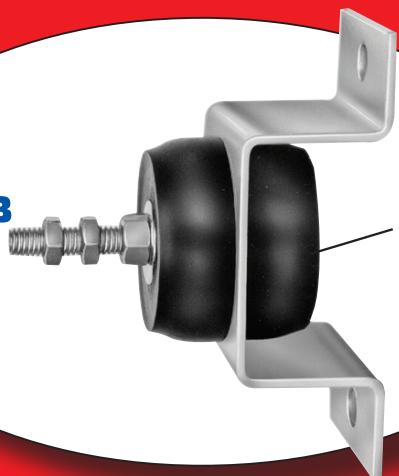
© European Acoustics Association 2025

MASON INDUSTRIES, INC.

Manufacturers of Noise and Vibration Control Products

We have been designing and improving acoustical isolation products for over sixty years by studying the market and listening to requirements and suggestions from the acoustical fraternity.

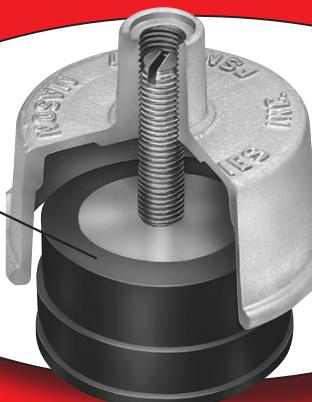
3ON
Ceiling
Hanger



6mm Deflection
Natural Rubber

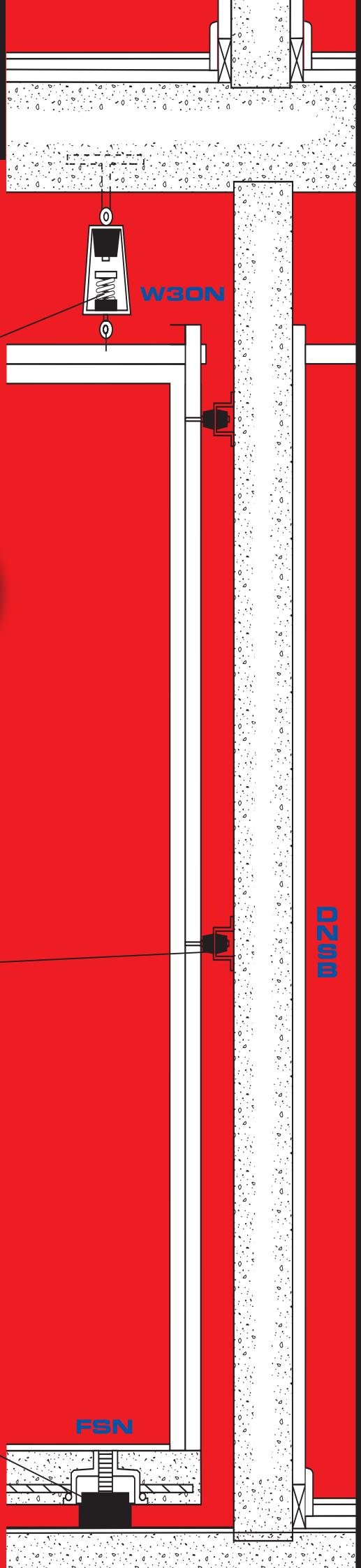
25mm Deflection
Spring

15° Clearance
All Around


DNSB
Sway
Brace

Low
Dynamic
Stiffness
Natural
Rubber

Low
Dynamic
Stiffness
Rubber


FSN
Jack-up
System

350 Rabro Drive, Hauppauge, NY, USA 11788

+1 631 348 0282 • FAX +1 631 348 0279

Email info@Mason-Ind.com • Website www.Mason-Ind.com

MAIN THEME ORGANIZERS

AA01 - Active Control of Sound and Vibration

Jordan Cheer
Teresa Bravo

AA02 - Bio-Acoustics

Bill Davis
David Waddington
Helen Whitehead
Ester Vidaña Vila

AA03 - Building Acoustics

Amelia Romero
Chiara Scrosati
Teresa Carrascal
Carolina Monteiro

AA04 - Education, Public Outreach and History in Acoustics

Montserrat Pàmies - Vilà
Nuria Campillo - Davó

AA05 - Environmental Acoustics

Miguel Arana
Guillermo del Rey
Judicäel Picaut

AA06 - Electro-Acoustics

Hervé Lissek
Libor Rufer
Petr Honzík
Vittorio Ferrari

AA07 - Flow Acoustics

Stefan Becker
Daniele Ragni
Roberto Camussi

AA08 - Industrial Machinery, Equipment Noise and Vibration

Francesco Pompoli
Jaime Ramis

AA09 - Machine Learning and AI in Acoustics

Dick Botteldooren
Rosa María Alsina
Manuel Sobreira

AA10 - Materials and Metamaterials

Jean-Philippe Groby
Rubén Picó

AA11 - Musical Acoustics

Vasileios Chatzioannou
Michele Ducceschi
Vincent Debut

AA12 - Physical Acoustics and Ultrasound

Lynda Chehami
Óscar Martínez - Graullera
Noé Jiménez

AA13 - Physiological and Audiological Acoustics

Deborah Vickers
Maria Milagros J. Fumero
Miriam Isabel Marrufo Pérez

AA14 - Psychoacoustics

Piotr Majdak
Nicola Prodi
Philipp Aichinger

AA15 - Room Acoustics

Monika Rychtáříková
Ingo Witew
Mélanie Nolan

AA16 - Signal Processing

Efrén Fernández Grande
Boaz Rafaelly
Frank Zotter

AA17 - Soundscape, Environmental Quality, Health and Well-Being

André Fiebig
Jerónimo Vida

AA18 - Speech

Laureano Moro - Velázquez
Eugenia San Segundo
Nick Cummins
Phillip Aichinger

AA19 - Numerical, Computational and Theoretical Acoustics

Luis Godinho
Maarten Hornikx
Stefan Schoder
Marcus Mäder

AA20 - Transportation Noise and Vibration

Stephanos Theodossiades
Eduardo Latorre
Ramón Peral

AA21 - Sound Quality and Product Design

Elif Özcan Vieira
Patrick Susini
Georgios Marentakis
Doriana del Palú

AA22 - Underwater Acoustics

Dídac Diego - Tortosa
María Campo

AA23 - Vibro-Acoustics

Jose Roberto de Franca Arruda
Robert Arcos
Arnaud Clot
Oriol Guash

AA24 - Virtual Acoustics

Brian Katz
Arcadio Reyes Lecuona
José Javier López Monfort

SESSION ORGANIZERS

Abhayapala T.

A09.06/A16.03 Machine learning for array processing

Aichinger P.

A14.01 Psychoacoustics - General
A18.01 Speech - General

Alsina-Pagès R.M.

A08.07/A09.05 Artificial intelligence for industrial applications
A09.01 Machine learning and AI in acoustics - General
A17.04 Soundscape methods, monitoring and metrics

Altinsoy E.

A14.06 Development of semantic attributes based on psychoacoustic modelling

Amado Mendes P.

A05.07 Outdoor sound propagation
A10.10/A19.08 Numerical methods for wave propagation in complex media

Anda S.

A08.03 Advances in machinery noise and vibration control
A20.02 Automotive noise and vibration

Andreopoulou A.

A16.07/A24.11
Processing/individualization/interpolation of HRIRs or BRIRs

Antunes S.

A03.04 Ground borne noise

Arana M.

A05.01 Environmental acoustics - General
A05.04 Wind turbine noise

Arcos R.

A20.05 Railway noise and vibration
A23.01 Vibroacoustics

Arenas J.

A08.04/A10.04 Materials and systems for noise and vibration reduction

Aspöck L.

A19.07 Validation and benchmarks in computational acoustics

Aspuru Soloaga I.

A17.04 Soundscape methods, monitoring and metrics

Astolfi A.

A15.02 Speech production and perception in rooms

Atamer S.

A14.06 Development of semantic attributes based on psychoacoustic modelling

Aumond P.

A09.07 Events detection and localization, and acoustic scenes, using ML techniques

Ausiello L.

A11.03 Consistency of musical instrument making

Avallone F.

A07.05/A19.06 Methods for advanced computational aeroacoustics

Bai M.R.

A01.06 Signal processing for active control

Barbancho A.M.

A11.05 Instruments, hyperinstruments and beyond

Barros A.

A05.03 Environmental noise perception

Battarra M.

A08.05 NVH damage detection, condition monitoring, diagnostics of machinery

Becker S.

A07.01 Flow acoustics - General
A07.04 Fluid structures acoustic coupling

Bellows S.

A16.06 Source directivity: capturing, processing, and evaluating its effects

Bellucci P.

A05.06 Recent advances in noise mitigation methods
A20.06 Noise barriers and mitigation techniques for road traffic and railway

Ben Tahar M.

A12.02 NDT & SHM Applications

Bernardini G.

A07.05/A19.06 Methods for advanced computational aeroacoustics

Berzborn M.

A15.11/A16.05 Sound field reconstruction in rooms and enclosures

Bottalico P.

A15.02 Speech production and perception in rooms

Botteldooren D.

A09.01 Machine learning and artificial intelligence in acoustics - General

Bravo T.

A01.05/A06.07 Active metamaterials
A10.08 Modeling acoustic wave propagation in viscothermal structures

Brinkmann F.

A24.09/A24.13 Motion and rendering

Camacho J.

A12.03 Biomedical ultrasound

Campillo-Davo N.

A04.01 Education, Public outreach and history in acoustics - General
A04.02 Online resources and simulations
A04.05 Yesterday, today and tomorrow of research in acoustics
A20.04 Tyre/road noise

Campo-Valera M.

A22.03 Communication, positioning and acoustic sensor systems
A22.05 Geophysics and Distributed Acoustic Sensing (DAS)

Camussi R.

A07.01 Flow acoustics - General
A07.02 Aeroacoustics of aircraft and urban air vehicles

Carbajo San Martín J.

A08.04/A10.04 Materials and systems for noise and vibration reduction

Carlosena A.

A06.06 Acoustic-based sensors, actuators and microsystems

Carrascal T.

A03.01 Building acoustics - General
A03.02 Acoustic regulations, classification schemes and standards
A03.08 Reducing neighbour noise by acoustic retrofit in housing

Casalino D.

A07.02 Aeroacoustics of aircraft and urban air vehicles

Chatzioannou V.

A11.01 Musical acoustics - General
A11.04 Articulated musical instrument modelling

Chazot J.D. A19.01 Numerical, computational and theoretical acoustics - General	Del Palú D. A21.03 Listening experience in sound-driven design	Ferrer E. A07.04 Fluid structures acoustic coupling
Chehami L. A12.02 NDT & SHM Applications	Del Val L. A16.04 Airborne sonar	Ferrer Contreras M. A01.07/A08.06 Innovative noise barriers to enhance acoustic comfort
Chevillotte F. A10.07/A15.07 Characterization of acoustic materials	Delle Monache S. A21.04 Methodologies for sound-driven design and education	Fiebig A. A17.01 Soundscape, environmental quality, health and well-being A17.02 Restorative soundscapes A17.03 Soundscape practice and interventions
Chmelík V. A03.09 Acoustic and thermal retrofit of office building stock in EU	Deng J. A10.05/A23.05 Metamaterials and acoustic black holes in vibro-acoustics	Fink N. A13.04 Advancements and challenges in military acoustics
Cobos M. A09.06/A16.03 Machine learning for array processing	Díaz A. A03.10 Acoustic consultancy projects and BIM	Fraga de Frieta E. A20.04 Tyre/road noise
Cosarinsky G. A12.02 NDT & SHM Applications	Diego - Tortosa D. A22.03 Communication, positioning and acoustic sensor systems A22.05 Geophysics and Distributed Acoustic Sensing (DAS)	Fuente M. A03.07 Acoustics of wooden buildings
Cuenca J. A10.03 Metamaterials for noise and vibration reduction	Diviacco P. A22.04 Traffic ship noises	Fusaro G. A03.11/A05.11 Heat pump sounds in residential settings A03.12 Ventilation noise in dwellings
Cummins N. A18.01 Speech - General	Ducceschi M. A11.01 Musical acoustics - General	Gan W.S. A01.06 Signal processing for active control
D'Orazio D. A15.03 Modern offices: challenges and solutions	Duocastella M. A12.07 Acousto-optics	Garai M. A03.05 Structure-borne sound and noise from building services A20.06 Noise barriers and mitigation techniques
Dalmont J.P. A11.03 Consistency of musical instrument making	Dupont S. A12.07 Acousto-optics	García Gómez J.Ó. A15.09 Sound reflections in concert halls
Davies B. A02.01 Bio-acoustics - General	Durand S. A06.02 Microphones (theory, measurement, MEMS, etc.)	Gautier F. A10.05/A23.05 Metamaterials and acoustic black holes in vibro-acoustics
Dazel O. A10.06/A19.05 Numerical methods for acoustic materials and metamaterials	Ech - Cherif El - Kettani M. A12.02 NDT & SHM Applications	Godinho L. A05.07 Outdoor sound propagation A10.06/A19.05 Numerical methods for acoustic materials
de la Prida D. A14.07 Robust and unbiased psychoacoustical experimentation A15.10 Modeling room impulse responses with machine learning	Encina Llamas G. A18.04 Speech perception pathologies	Gómez - García J.A. A18.03 Speech production pathologies
De Marqui Jr C. A01.05/A06.07 Active metamaterials	Engel M.S. A14.06 Semantic attributes based on psychoacoustic modelling A17.02 Restorative soundscapes	González A. A01.07/A08.06 Innovative noise barriers to enhance acoustic comfort
Debut V. A11.01 Musical acoustics - General	Estévez - Mauriz L. A05.05 Urban sound planning A20.03 Road traffic noise and vibration	Guasch O. A23.01 Vibroacoustics
Deckers E. A10.03 Metamaterials for noise and vibration reduction	Fernández - Grande E. A15.11/A16.05 Sound field reconstruction in rooms and enclosures	Guigou Carter C. A03.04 Ground borne noise
Declercq N. A12.01 Physical acoustics and ultrasound - General	Ferrari V. A06.06 Acoustic-based sensors, actuators and microsystems	

Guillén S. A11.05 Instruments, hyperinstruments and beyond	Kang J. A01.07/A08.06 Innovative noise barriers A17.03 Soundscape practice and interventions	Malléjac M. A10.02 Acoustic, vibroacoustic and elastic metamaterials
Hampton T. A17.07 Hospital soundscape	Katz B.F.G. A15.04/A24.06 Virtual reconstructions in archaeoacoustic research A24.01 Virtual acoustics - General	Manvell D. A05.08 Advances in noise mapping
Harvie - Clark J. A03.11/A05.11 Heat pump sounds in residential settings A03.12 Ventilation noise in dwellings	Larrosa - Navarro M. A14.07 Robust and unbiased psychoacoustical experimentation	Marektakis G. A21.03 Listening experience in sound-driven design
Hernández - Molina R. A18.02 Forensic phonetics and acoustics	Latorre Iglesias E. A20.01 Transportation noise and vibration - General A20.05 Railway noise and vibration	Martellotta F. A15.04/A24.06 Virtual reconstructions in archaeoacoustic research
Hoeller C. A03.05 Structure-borne sound and noise from building services	Lee P.J. A17.07 Hospital soundscape	Martínez - Graullera O. A12.03 Biomedical ultrasound
Hongisto V. A15.03 Modern offices: challenges and solutions	Lenzi S. A21.02 Applied sound-driven design	Mastino C.C. A03.10 Acoustic consultancy projects and BIM
Honzík P. A06.02 Microphones (theory, measurement, MEMS, etc.)	Licitra G. A05.06 Recent advances in noise mitigation methods A08.07/A09.05 Artificial intelligence for industrial applications	Masullo M. A14.10 Experiments for noise annoyance, comfort, and soundscape
Hopkins C. A03.03 Prediction of sound and vibration transmission in buildings	Lissek H. A01.05/A06.07 Active metamaterials	Maury C. A10.08 Modeling wave propagation in viscothermal structures
Hornikx M. A15.12/A19.09 Numerical methods for room acoustics A19.01 Numerical, computational and theoretical acoustics	López Monfort J.J. A24.01 Virtual acoustics - General	Mayer - Kahlen N. A14.08/A24.05 Virtual acoustics and binaural AR in hearing research
Izquierdo A. A16.04 Airborne sonar	López - Espejo I. A18.04 Speech perception pathologies	Mayhofer D. A19.02 Numerical methods for acoustics and vibration
Jacob S. A07.06 Modern experimental techniques in aeroacoustics	Lostanlen V. A02.07/A09.03 AI and machine learning in bioacoustics A09.07 Events detection and localization using ML	Merino - Martínez R. A20.07 Aircraft noise
Jacob M. A07.06 Modern experimental techniques in aeroacoustics	Lotinga M. A05.10/A14.09 Advanced air mobility noise	Miniaci M. A10.02 Acoustic, vibroacoustic and elastic metamaterials
Jadoul Y. A02.07/A09.03 AI and machine learning in bioacoustics	Maag T. A05.05 Urban sound planning	Misdariis N. A21.02 Applied sound-driven design
Jaouen L. A10.07/A15.07 Characterization of acoustic materials A10.08 Modeling wave propagation in viscothermal structures	Maeder M. A19.01 Numerical, computational and theoretical acoustics - General A19.07 Validation and benchmarks in computational acoustics	Misol M. A01.02/A01.03 Active sound and vibration control
Jeon W. A10.05/A23.05 Metamaterials and acoustic black holes in vibro-acoustics	Majdak P. A14.01 Psychoacoustics - General A14.04 Spatial hearing: modeling and applications	Montano Rodríguez W.A. A04.05 Yesterday, today and tomorrow of research in acoustics
Jiménez N. A12.01 Physical acoustics and ultrasound - General		Monteiro C. A03.01 Building acoustics - General
		Moro - Velázquez L. A18.01 Speech - General A18.05 Speech technologies: diarization, emotion, enhancement

Mucchi E. A08.05 NVH damage detection, condition monitoring, diagnostics of machinery	Pérez - Liva M. A12.03 Biomedical ultrasound	Ramírez Salado M. A18.02 Forensic phonetics and acoustics
Murphy E. A05.08 Advances in noise mapping	Pezzoli M. A09.08/A11.02 Artificial intelligence in musical acoustics	Ramis - Soriano J. A02.02/A22.02 Underwater soundscape and noise A08.03 Advances in machinery noise and vibration control
Negreira J. A15.05 Acoustic comfort in hospitals	Piana E. A08.03 Advances in machinery noise and vibration control	Rasmussen B. A03.02 Acoustic regulations, classification schemes and standards A03.08 Reducing neighbour noise by acoustic retrofit in housing
Neidhardt A. A24.09/A24.13 Motion and rendering	Picaut J. A05.01 Environmental acoustics - General A05.04 Wind turbine noise	Reichl C. A03.11/A05.11 Heat pump sounds in residential settings A03.12 Ventilation noise in dwellings
Noisternig M. A16.06 Source directivity	Piñero G. A15.10 Modeling and estimation of room impulse responses with machine learning	Reyes - Lecuona A. A14.08/A24.05 Virtual acoustics and binaural AR A24.01 Virtual acoustics - General
Nolan M. A10.07/A15.07 Characterization of acoustic materials A10.08 Modeling wave propagation in viscothermal structures A15.01 Room acoustics - General	Plumbley M. A09.01 Machine learning and artificial intelligence in acoustics - General	Rodríguez P. A20.07 Aircraft noise
Osse S. A14.04 Spatial hearing: modeling and applications	Pompoli F. A08.04/A10.04 Materials and systems for noise and vibration reduction	Rodríguez - Montaño V.M. A18.02 Forensic phonetics and acoustics
Özcan E. A17.07 Hospital soundscape A21.02 Applied sound - driven design	Poveda Martínez P. A02.02/A22.02 Underwater soundscape and noise A08.05 NVH damage detection, condition monitoring	Romero A. A03.01 Building acoustics - General
P. B. Reynders E. A03.03 Prediction of sound and vibration transmission in buildings	Prieto A. A10.10/A19.08 Numerical methods for wave propagation in complex media	Romero - García V. A10.09/A12.10 Acoustic wave propagation in complex media
Pàmies - Vilà M. A04.01 Education, Public outreach and history in acoustics A04.02 Online resources and simulations for teaching	Prinn A. A19.07 Validation and benchmarks in computational acoustics	Rosa González F.L. A22.04 Traffic ship noises
Panagiotopoulos D. A19.02 Numerical methods for acoustics and vibration	Prodi N. A14.01 Psychoacoustics - General	Rufer L. A06.03 Loudspeakers and headphones (theory, measurement, MEMS, etc.)
Pauletto S. A21.03 Listening experience in sound - driven design	Puglisi G. A15.06 Acoustic and multidomain comfort in learning spaces	Rus G. A12.03 Biomedical ultrasound
Pawelczyk M. A01.02/A01.03 Active sound and vibration control A01.07/A08.06 Innovative noise barriers A05.01 Environmental acoustics - General	Rafaely B. A16.02 Spatial audio signal processing	Russo R. A09.08/A11.02 Artificial intelligence in musical acoustics
Peral - Orts R. A20.01 Transportation noise and vibration - General A20.03 Road traffic noise and vibration	Ragni D. A07.01 Flow acoustics - General A07.02 Aeroacoustics of aircraft and urban air vehicles	Rychtáriková M. A03.09 Acoustic and thermal retrofit of office building stock A15.01 Room acoustics - General
Pérez Vargas R. A18.02 Forensic phonetics and acoustics	Raiola M. A07.03 Active and passive noise reduction technologies	San Segundo E. A18.01 Speech - General
	Ramallo S. A24.01 Virtual acoustics - General	Sanz Segura R. A21.04 Methodologies for sound - driven design and education

Sastre J. A11.06/A24.07 Networked music performances and virtual environments	Susini P. A21.04 Methodologies for sound-driven design and education	Vida Manzano J. A17.01 Soundscape, environmental quality, health and well-being - General A17.04 Soundscape methods, monitoring and metrics
Schanda U. A03.05 Structure-borne sound and noise from building services	Taghipour A. A14.10 Experiments for noise annoyance, comfort, and soundscape	Vidaña - Vila E. A02.01 Bio-acoustics - General
Schoder S. A07.05/A19.06 Methods for advanced computational aeroacoustics A19.07 Validation and benchmarks in computational acoustics	Talebzadeh A. A17.06 Soundscape and inclusion, from theory to practice	Villacorta J.J. A16.04 Airborne sonar
Schoenwald S. A03.07 Acoustics of wooden buildings	Tembourg Gutiérrez M. A13.06 Audiology diagnostic techniques	Visentin C. A15.03 Modern offices: challenges and solutions A15.06 Acoustic and multidomain comfort in learning spaces
Schulte-Fortkamp B. A17.06 Soundscape and inclusion, from theory to practice	Thebaud T. A18.05 Speech technologies: diarization, emotion, enhancement	Waddington D. A02.01 Bio-acoustics - General
Schulz A. A07.03 Active and passive noise reduction technologies	Theodossiades S. A20.01 Transportation noise and vibration - General A20.02 Automotive noise and vibration	Want W. A09.01 Machine learning and artificial intelligence in acoustics - General
Scrosati C. A03.01 Building acoustics - General	Torija Martínez A. A05.10/A14.09 Advanced air mobility noise	Weger M. A13.04 Advancements and challenges in military acoustics
Sea E.A. A19.01 Numerical, computational and theoretical acoustics - General	Torrent D. A10.02 Acoustic, vibroacoustic and elastic metamaterials	Whitehead H. A02.01 Bio-acoustics - General
Secchi S. A15.05 Acoustic comfort in hospitals	Torresin S. A17.05 Indoor soundscapes	Willemsen S. A11.06/A24.07 Networked music performances and virtual environments
Segura-García J. A24.09/A24.13 Motion and rendering	Undurraga J. A13.06 Audiology diagnostic techniques	Williges B. A13.05 Asymmetric hearing loss - clinical solutions and functionality
Shabalina E. A10.03 Metamaterials for noise and vibration reduction	Valier-Brasier T. A10.09/A12.10 Acoustic wave propagation in complex media	Witew I. A15.01 Room acoustics - General
Siebein K. A17.03 Soundscape practice and interventions	Van Belle L. A10.03 Metamaterials for noise and vibration reduction	Wrona S. A01.07/A08.06 Innovative noise barriers
Širović A. A02.02/A22.02 Underwater soundscape and noise	Van Damme B. A10.02 Acoustic, vibroacoustic and elastic metamaterials	Yorukoglu P.N.D. A17.05 Indoor soundscapes
Slabbekoorn H. A02.05 Effects of multimodal stimuli on wildlife	Van Renterghem T. A02.05 Effects of multimodal stimuli on wildlife A05.03 Environmental noise perception	Yue Z. A18.03 Speech production pathologies
Sobreira M. A09.01 Machine learning and artificial intelligence in acoustics - General	Van Walstijn M. A11.04 Articulated musical instrument modelling	Zaffaroni - Caorsi V. A02.02/A22.02 Underwater soundscape and noise
Spagnol S. A21.02 Applied sound-driven design	Vanhamel J. A12.07 Acousto-optics	Zambon G. A02.02/A22.02 Underwater soundscape and noise
Stoppel F. A06.03 Loudspeakers and headphones		Zirn S. A13.05 Asymmetric hearing loss - clinical solutions and functionality
		Zotter F. A16.02 Spatial audio signal processing

Plenary Sessions

Plenary Session 1

Sounds of the Ocean: understanding marine life and its interactions with sound

Author: Ana Širović

Affiliation: Norwegian University of Science and Technology, Norway

Date: Monday, June 23rd

Biography:

Ana Širović is a marine bioacoustician and a professor at the Norwegian University of Science and Technology (NTNU) in Trondheim, Norway. Originally from Croatia, she obtained a Bachelor's degree from the University of California Santa Barbara and a PhD in Oceanography from the Scripps Institution of Oceanography at the University of California San Diego in the United States. She is interested in the development and use of new methods to improve understanding of highly exploited and endangered marine species. She also conducts research on ambient sound and the effects of anthropogenic noise on marine life. Her group uses acoustic tools to answer ecological, population-level questions relevant to the management of animal resources. Prior to joining NTNU, Prof. Širović was a faculty member at Texas A&M University at Galveston and Alaska Pacific University, and a research oceanographer at the Scripps Institution of Oceanography. She is the recipient of the Medwin prize from the Acoustical Society of America and the US Antarctic Service Medal.

Abstract:

Sound allows us to investigate the ocean on a much finer time scales than other methods of study as it is feasible to collect continuous underwater recordings over months or years at a time. At the same time, sound is critical for successful functioning of many marine animals. It helps them find food and mates, fend off threats, and sense their environment. I will present case studies that highlight how we have been gaining valuable ecological and biological knowledge about baleen whale and fish species through long-term passive acoustic monitoring effort. Some of these highlights include an improved understanding of animal occurrence and coupling of the occurrence of predators and prey into dynamic ecosystem patterns dynamics, leading ultimately to a fuller understanding of their roles in the ocean. In addition, I will reflect on the concerns that increases in ocean sound levels raise regarding functioning of marine life and ecosystems, again highlighting the issues via several case studies. Effects of exposure to seismic noise studies also show mixed impact across taxa. In lab-based experiments, we found that exposures to sounds of seismic airguns on red drum (*Sciaenops ocellatus*) juveniles did not induce an increase in water-borne and tissue-measured steroid hormone levels. Pile driving noise often results in hearing impairment in marine mammals and injury in fishes. Currently, impacts from other industrial noise sources are poorly documented across taxa. One such source of increasing interest is offshore wind farms. In 2023 and 2024, we conducted microcosm and mesocosm experiments to investigate the response of plankton community to sounds of operational wind farms. Our preliminary results indicate impacts across trophic levels. Overall, given the limited number of species used in noise impact experiments, development of categorizing principles and modeled response pathways will be necessary to better elucidate mechanistic framework for observed impacts. Combined with multi-stressor impact assessment framework and integration and interplay of effects across ecosystems, improved understanding of underlying impact mechanisms should contribute to a better understanding and ultimately a more efficient management of marine resources.

Plenary Sessions

Plenary Session 2

AI for Acoustics: Recognition, Captioning, Visualization, Separation and Generation of Everyday Sounds

Author: Prof. Mark Plumley

Affiliation: University of Surrey, UK

Date: Tuesday, June 24th

Biography:

Prof. Mark Plumley is Professor of Signal Processing at the Centre for Vision, Speech and Signal Processing (CVSSP) at the University of Surrey, in Guildford, UK. He is an expert on analysis and processing of audio, using a wide range of signal processing and machine learning methods. He led the first international data challenge on Detection and Classification of Acoustic Scenes and Events (DCASE), and is a co-editor of the book "Computational Analysis of Sound Scenes and Events" (Springer, 2018). He currently holds a 5-year EPSRC Fellowship "AI for Sound" on automatic recognition of everyday sounds. He is a Member of the IEEE Signal Processing Society Technical Committee on Audio and Acoustic Signal Processing, and a Fellow of the IET and IEEE.

Abstract:

The last few years has seen a rapid increase of interest in the application of AI to everyday sounds. Starting a decade ago with acoustic scene classification and sound event detection, the challenges and workshops on Detection and Classification of Acoustic Scenes and Events (DCASE) have brought together researchers from academia and industry to establish a new research community. In this talk, I will highlight some of the work taking place in this area at the University of Surrey, including pretrained audio neural networks (PANNs), audio captioning, audio visualization, audio source separation and audio generation (AudioLDM). I will also mention some cross-cutting issues such as dataset collection, algorithm efficiency, and large language models (LLMs), and discuss how we might design future AI applications for acoustics, to benefit of people and society.

Plenary Sessions

Plenary Session 3

Standardizing soundscape perception and other tales

Author: Francesco Aletta

Affiliation: University College London, UK

Date: Wednesday, June 25th

Biography:

Dr Francesco Aletta is a Lecturer in Building Physics and Soundscape at Institute for Environmental Design and Engineering, University College London (UCL). His research focuses on environmental acoustics and soundscape studies. Francesco is committed to advancing soundscape research through his contribution to the ISO 12913 series on soundscapes, which provides a comprehensive framework for assessing and managing urban sound environments. Francesco's research has informed international policy discussions. He authored a United Nations Environment Programme report in 2022, addressing emerging environmental concerns related to noise and its impact on public health and urban environments. His work is frequently referred in policy documents and guidelines aimed at promoting healthier and more sustainable sound environments globally. As part of his standardization efforts, Francesco coordinated the Soundscape Attributes Translation Project, an international collaboration of more than 100 scholars worldwide. He is also an active member of editorial boards for leading journals, including the Journal of the Acoustical Society of America (Coordinating Editor for TC Noise), and member of the organizing committee of several international conferences, including the Urban Sound Symposium, and the Lancet UK Public Health Science Conference. Francesco is a member of the Italian Acoustical Society (AIA), the Acoustical Society of America (ASA), and serves as secretary of the Technical Committee Noise of the European Acoustics Association (EAA). With over 200 publications, 6,000 citations and multiple awards, including the ASA Science Communication Award in 2023, Francesco aims to contribute to the global discourse on soundscape design, urban acoustics, and public health.

Abstract:

The way we experience soundscapes is deeply personal, shaped by cultural, environmental, and psychological factors. Yet, as urbanization accelerates and noise management becomes a global priority, the need for standardized approaches to assessing and designing soundscapes has never been greater. This keynote explores the evolving efforts to establish frameworks for soundscape perception, from the development of international standards to the challenges of ensuring their widespread adoption. While standardization provides a necessary foundation for consistency, the reality of soundscape experience is far from universal. People from different cultural and linguistic backgrounds perceive, interpret, and encode sounds in diverse ways, highlighting the limitations of rigid frameworks. Addressing this complexity requires a balance between structured methodologies and adaptability to local contexts. Advances in cross-cultural research and translation efforts are helping to refine these approaches, making soundscape assessment more inclusive and representative. At the same time, new methods for quantifying soundscape quality are emerging, offering ways to integrate perceptual and contextual dimensions into meaningful metrics. These developments not only enhance our ability to compare and evaluate soundscapes but also provide valuable tools for urban planners, policymakers, and designers to create environments that support well-being. This talk will explore the intersection of standardization, perception, and measurement, reflecting on how soundscapes can be assessed in a way that respects both scientific rigor and human experience.

Plenary Sessions

Plenary Session 4

Sculpting sound fields with acoustic holograms

Author: Dr. Noé Jiménez

Affiliation: Spanish Research Council (CSIC), Spain

Date: Thursday, June 26th

Biography:

Noé Jiménez is a Senior Scientist at the CSIC since 2024. He develops his work at the Institute of Instrumentation for Molecular Imaging, a joint centre of the Universitat Politècnica de València (UPV) and the CSIC. He is a Telecommunications Engineer, holds a Master's degree in acoustics and a PhD (2015) from the UPV. He has been a Ramón y Cajal senior researcher, Juan de la Cierva - Incorporation, Juan de la Cierva - Training, has worked at the CNRS (France) as a postdoctoral researcher for two years, and has made stays at Columbia University (NYC, USA), the University of Salford (UK), and the University of Le Mans (France). He has over 15 years' experience in developing imaging and therapeutic ultrasound systems, wavefront shaping techniques and acoustic metamaterials. His recent research interest ranges from the application of acoustic metamaterials for biomedical ultrasound applications, novel therapeutic ultrasound techniques, acoustic holograms, and acoustic vortices.

Abstract:

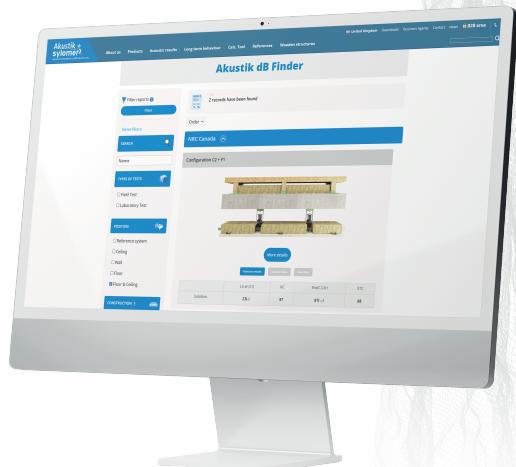
Using optical holograms, we can modulate light wavefronts to generate visible images. Can we do the same with sound waves? Acoustic holograms can render sonic images, shaping the areas where mechanical waves present a high amplitude, and areas where the media is at rest. In this plenary talk, we will present an overview of the use of acoustic holograms, and how they can be applied in biomedical ultrasound applications, in particular in emerging therapeutic applications of focused ultrasound, but also in other fields like audible engineering acoustics or contactless particle trapping, to tailor sound waves in unprecedented ways.

Akustik +
sylomer[®]
by getzner

Application BROCHURES

- Building Acoustics
- Solutions for gyms
- Urban Supermarkets
- Machinery in buildings
- Hotels
- Timber constructions
- Floating floors
- and more!

THE BEST STRUCTURAL INSULATION
SYSTEM FOR YOUR PROJECTS



SCAN ME

Akustik dB Finder

Impact / Airborne Noise Test Results
with a simple click on akustik.com

AMC Mecanocaugo
The best anti-vibration solutions since 1969

www.akustik.com
www.mecanocaugo.com

sales@amcsa.es

+34 943 69 61 02

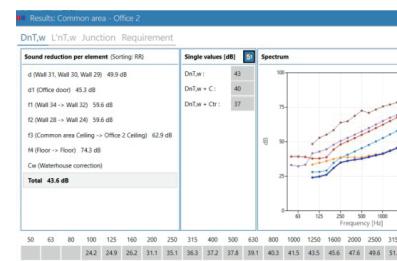
Visit our website www.akustik.com to see acoustic results and the full range of insulation products.

DataKustik

SOFTWARE FOR IMMISSION PROTECTION

STATE-OF-THE-ART NOISE PREDICTION SOFTWARE

Cadna A®



PREDICTION OF SOUND INSIDE ROOMS

Cadna R®

THE BUILDING ACOUSTICS PLANNING SYSTEM

Cadna B®

WWW.DATAKUSTIK.COM

DEMCON

**SOUND
SOLUTIONS**

Sonocat.

- In situ absorption
- In situ transmission
- 3D sound intensity
- Emitted intensity
- Reflected intensity
- Sound power
- Sound pressure
- 3D particle velocity
- 3D impedance

**VISIT US AT STAND 12
@ EURONOISE**

soundsolutions.demcon.com

SOUNDINSIGHT

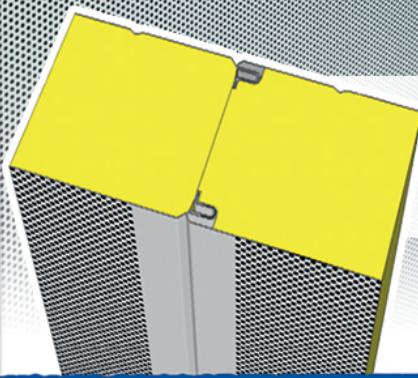
soundscape

visit us –
booth
10

What does our environment sound like?

Binaural recordings, mobile measurement systems, and (psycho-)acoustic analyses with HEADscape, along with standardization DIN ISO 12913, represent pioneering soundscape innovation that holistically evaluates noise quality—exclusively from HEAD acoustics.

REAL-LIFE-PROOF.


www.head-acoustics.com

metecno

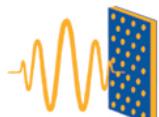
JETZT NEU!

Metecno RC5 high - gelochtes Sandwichelement mit geprüfter Korrosionsschutzklasse RC5

Schallabsorption

$\alpha_w = 0,9 - 1,0$

Schalldämmung


$R_w = 36 - 70 \text{ dB}$

**Schallschutz-Sandwichelement mit Dämmkern
aus Glas- oder Steinwolle**

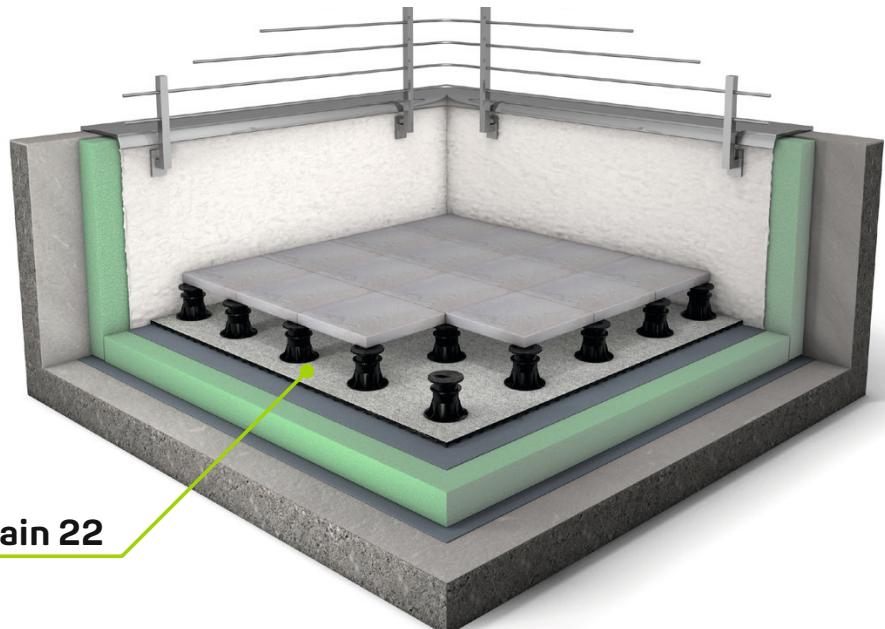
Detaillierte Prüfberichte von namhaften Instituten

www.metecno-sound.de

Unerhört gut!

metecno
SOUND

akustik@metecno.de



Building Acoustics Measurement Kit

Nor145 Sound Level Meter | Nor283 Dodecahedron Loudspeaker
Nor282 Power Amplifier | Nor850 Software Package

THE ROOF AS AN EXPERIENCE SPACE QUIET UNDERNEATH.

REGUPOL sound and drain 22

Cradle to Cradle Certified®
is a registered trademark of
the Cradle to Cradle Products
Innovation Institute.

acoustics@regupol.eu | www.regupol.com

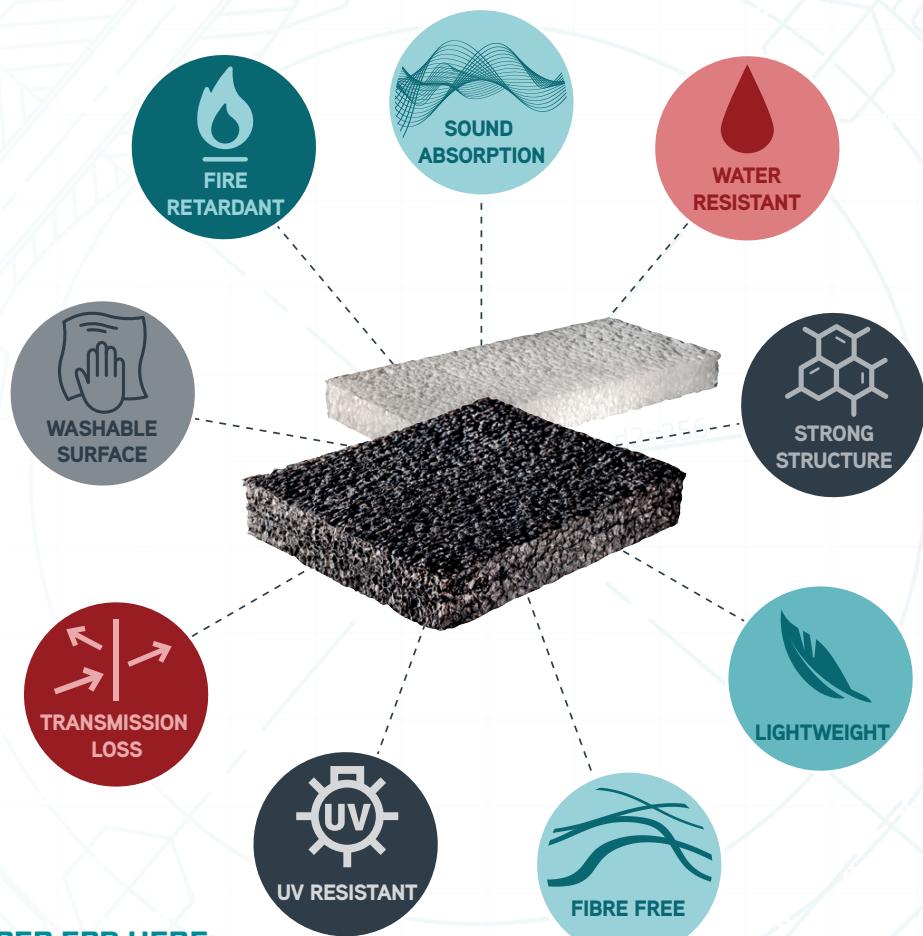
 REGUPOL

COMPREHENSIVE ACOUSTIC SOLUTIONS TAILORED TO YOUR PROJECT'S NEEDS

- **BUILDING
ENVELOPE**
- **GLAZING**
- **PARTITIONS**
- **CEILINGS**

Adapted to the needs of each project, providing the greatest acoustic and aesthetic comfort.

We are committed to building better for people and the planet.


Whisper® Acoustic Panels

Noise can be annoying! Just make it Whisper

Whisper is the world's first commercial metamaterial using networked closed cells to absorb noise resulting in an efficient and durable acoustic solution.

IT'S THE COMBINATION OF PERFORMANCE ATTRIBUTES THAT MAKES WHISPER® ACOUSTIC PANELS SO UNIQUE.

Whisper acoustic panels are designed for recycling in post industrial LDPE packaging foam recycling systems. Whisper offers reduced carbon emissions over traditional mineral wool and polyester acoustic panels in many situations.

YOU CAN CHECK OUT OUR WHISPER EPD HERE:

<https://www.environdec.com/library/collection/col151>

EPD®

THE INTERNATIONAL EPD® SYSTEM

Visit our website: pages.sealedair.com/uk-whisper

A prueba de fuego.

Un paso más en el aislamiento acústico.

En **SEGOR** seguimos innovando en soluciones de **máximo aislamiento acústico** homologadas en laboratorio, ahora con **resistencia al fuego certificada EI120 y EI180**.

Toda la innovación en 3 sistemas:
TECHO / TRASDOSADO / TABIQUE

Accede a las soluciones
más avanzadas
escaneando este código

Visit our booth

#29

Next generation acoustic simulations

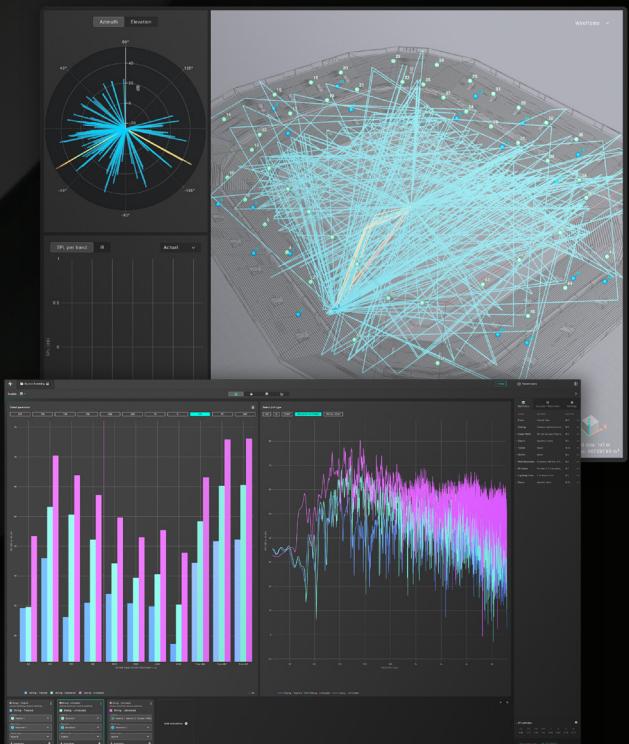
Fastest simulation engine

Run multiple concurrent simulations, save time, and increase productivity

Treble & BIM

IFC imports with automatic geometry simplification

Highly accurate simulations


Precise modeling of absorption, phase, diffraction, modes, and coupling

Hybrid solvers for flexibility

Combine fast geometrical and wave-based solvers for flexible simulations

Powerful analysis tools

Experience features like the auralizer, reflection tracking, modal analysis, and many more

treble.tech

Try Treble
for free
for 14 days

COMPLETE PRECISION. BUILT IN.

With Bedrock Elite, every advanced feature comes standard, because real professionals shouldn't have to choose between options.

Experience inclusive innovation
FAST, ACCURATE, AND FUTURE-READY.

VISIT US TO UNCOVER MORE

www.bedrock-elite.com

B E D R O C K E L I T E

dBelectronics

NOISE CONTROL
& MANAGEMENT
SMART CITIES
IN REAL-TIME

+34 670 580 725 - info@dbelectronics.es - dbelectronics.es

Monitorización de Ruido y Vibraciones

Mapas de Ruido

EARTHSENSE

Smart Cities / ZBE

Acoustic Imaging

Síguenos en LinkedIn

Discover [Stravi-dB](#), our free online test data platform!

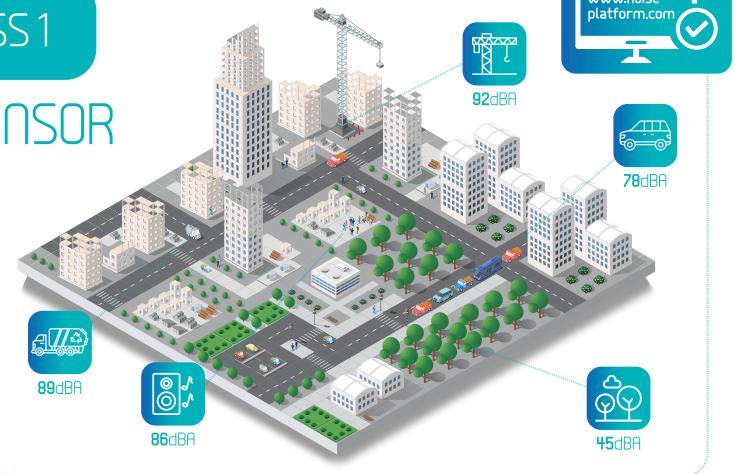
Stravi-dB is an online library that lets you easily find
the acoustical test reports you're looking for.

CDM Stravitec (HQ)

Reutenebeek 9-11
3090 Overijse
Belgium

T +32 2 687 79 07
info@cdm-stravitec.com
www.cdm-stravitec.com

TA150 | CLASS 1


NOISE SPECTRUM SENSOR

Smart Noise Management

1 CLASS 1
According IEC 61672-1

L_{xy} 12 FUNCTIONS
LAeq, LCeq, LZeq
and LAeq, LAFmax,
LASmax...

1/3 OCTAVE*
From 6,3 Hz
to 20 kHz

AUDIO FILES*
With automatisms
(By level, time
or emergency)

4G*
Modem
communication

GPS*
Position
Tracker

AI READY*
For event detection
and classification

*OPTIONAL

CESVA

NOISE MEASURING
INSTRUMENTS SINCE 1969

+ INFO
www.cesva.com

iNoise®

road, rail, industry and wind turbine noise prediction

dGm^R

SOFTWARE

www.dgmrsoftware.com/inoise

EAA

The European Acoustics Association (EAA) is a non-profit entity established in 1992 that includes in its membership societies predominantly in European countries interested promoting the development and progress of acoustics in its different aspects, its technologies and applications.

The EAA gathers 34 societies of acoustics and serves more than 9000 individual members all over Europe. The EAA is an Affiliate Member of the International Commission for Acoustics (ICA) and of Initiative of Science in Europe (ISE).

Contact: eaa.euracoustics.org

EAA European Acoustics Association
@EAAacoustics

Acoustics Solutions

Ingeniería Acústica García-Calderón

Proveedores de equipamiento para medidas de ruido y vibraciones. Diseño y suministro de cámaras anechoicas

CÁMARAS ACÚSTICAS FUENTES SONORAS ULTRALIGERAS MÁQUINA DE IMPACTOS

**MEDIDOR DE ABSORCIÓN Y
STL (SONOCAT)**

C/ Soto Hidalgo 24, local 8 28042
Madrid, Spain

Telf: +34 91 128 89 47

SONDAS INTENSIDAD 3D, PU

ANALIZADORES MULTICANAL

Email: info@garcia-calderon.com

Web: <https://garcia-calderon.com/>

IMS Measurement Systems

Let's Start with Sound and Vibration

Who Are We?

For more than 25 years, we've delivered high-quality sound and vibration solutions with the goal to enhance lives. We offer:

Professional Services:

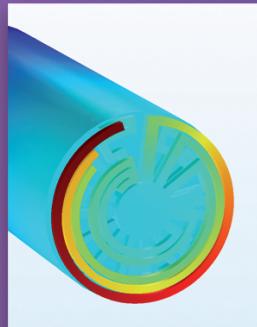
Our guarantee of highest quality services and equipment.

Consulting & Sales:

Expert guidance and premium measuring equipment.

Calibration & Support:

IMS lab calibration for optimal performance and fast turn-around time.


Acoustic and Vibration Measurements:

Precise analyses with our own and HBK measurement solutions.

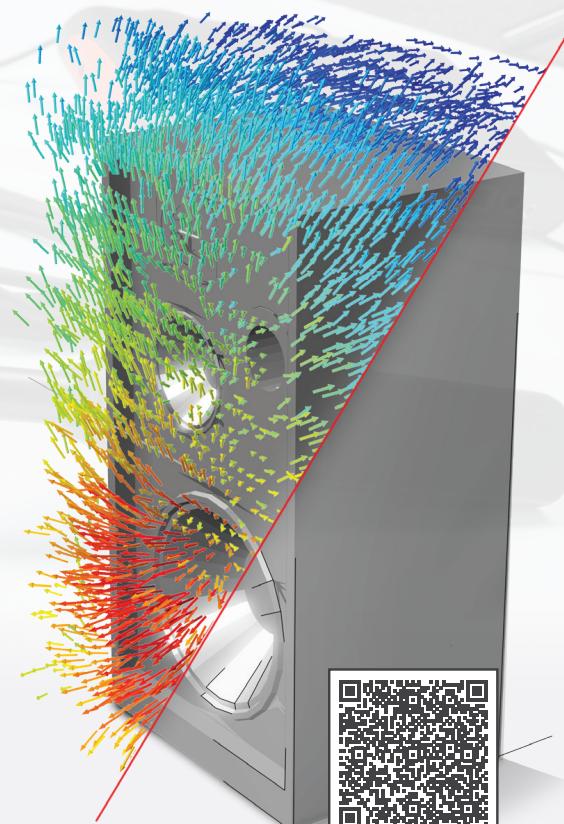
METACOUSTIC
10TH ANNIVERSARY

Acoustic R&D Services for industry

Vibro-
acoustic
simulations

Metamaterial
solutions

Experimental
validations


Visit us at booth #3

contact@metacoustic.com

MEASURING 3D SOUND FIELDS WITH MILLIMETER PRECISION

Capture sound intensity data with Scan&Paint 3D to
overcome acoustic challenges

[Learn More](#)

40 years of development!

The room acoustics software for reliable results

Four decades of development have made **ODEON** a reference software in the field of room acoustics, used by prominent companies in more than **80 countries**.

odeon.dk

MAKE SOUND VISIBLE

LOCALIZE ACOUSTIC CHALLENGES - FAST AND PRECISE.

With the Seven Bel Sound Scanner, you can quickly detect and visualize noise sources – even in the low-frequency range. High-resolution acoustic images support root cause analysis and enable you to focus your time on developing targeted, effective solutions.

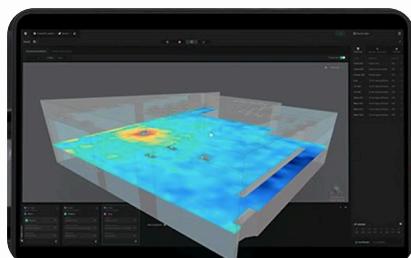
www.sevenbel.com

 sevenbel
EFFECTIVE SOUND IMAGING

EURO NOISE 2025

23-26 June

Advanced AI-Powered Noise Identification from Sonitus Systems


ANI, Automated Noise Identification, is designed to change the way environmental sounds are monitored. Save time and gain insight into what is really happening on your project using our powerful AI analysis tools.

sales@sonitussystems.com
www.sonitussystems.com

TRACK-NOISE

ACÚSTICA - AUDIO - RUIDO - VIBRACIONES
SISTEMAS DE LOCALIZACIÓN SONORA 2D & 3D

www.track-noise.com

www.nti-audio.com

Silence Engineering

Vibration, shock and noise control

📞 +34 916 483 833

🌐 viblens.com 📩 info@viblens.com

Engineering | Support & Training
| Antivibration Mounts |
Instrumentation | Noise Sources
& Impact Machines | Vibration,
Noise & Temperature Monitors |
Acoustic and Vibration Insulation
Sheets | Thermal Insulation |
Expansion Joints &
Compensators

Join us at Booth 5!
FORUM ACUSTICUM
EURONOISE 2025
23-26 JUNE 2025

ACOUSTIKI

In **TUNE** with **YOUR** needs

Architectural acoustics

Sound insulation

Vibration control

www.alphacoustic.com

www.vibro.gr

40+ years

SOCIEDAD ESPAÑOLA DE ACÚSTICA

Impulsando la acústica en España desde 1969

Hazte socio y da forma al futuro de la acústica.

Como cualquier sociedad sin ánimo de lucro, la SEA existe por y para sus asociados. Ser socio permite ser partícipe directo del avance y desarrollo de la profesión.

Los asociados son parte activa de la generación de conocimiento, participando en congresos, cursos y actividades.

BENEFICIOS EXCLUSIVOS

• Congresos y Exposiciones

Descuentos en Tecniacústicas y otros eventos nacionales, y en congresos internacionales de la EAA.

• Publicaciones

Recepción gratuita de la *Revista de Acústica*.

• Formación y Ayudas

Acceso a becas de estudio y bolsas de viaje para congresos.

Información sobre ofertas de trabajo en el sector.

• Red Profesional

Conexión con Expertos Senior y Jóvenes Acústicos.

• Información del sector

Actualización en novedades técnicas y normativas.

ORGANIZADORES DE:

**FORUM ACUSTICUM
EURONOISE 2025**

¡ASÓCIATE!

Visita nuestra web oficial

Escanea para ir al formulario